精英家教網 > 高中數學 > 題目詳情
(本小題15分)在坐標平面內有一點列,其中,,并且線段所在直線的斜率為
(1)求
(2)求出數列的通項公式 
(3)設數列的前項和為,求.
(1),
(2)
(3)
(1),,直線的斜率為
直線的斜率為,
(2)

累加得:,
檢驗當時也成立,
(3),令



兩式相減得:

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知各項均為正數的數列滿足,且,其中.
(Ⅰ)求數列的通項公式;
(Ⅱ)設數列的前項和為,令,其中,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


20. (本小題滿分13分)
已知數列{an}有a1 = a,a2 = p(常數p > 0),對任意的正整數n,,且
(1)求a的值;
(2)試確定數列{an}是否是等差數列,若是,求出其通項公式;若不是,說明理由;
(3)對于數列{bn},假如存在一個常數b,使得對任意的正整數n都有bn< b,且,則稱b為數列{bn}的“上漸近值”,令,求數列的“上漸近值”.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
設等差數列項和為,則有以下性質:成等差數列.
(1) 類比等差數列的上述性質,寫出等比數列項積的類似性質;
(2) 證明(1)中所得結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
設數列的前項和為,已知,為常數,,),且成等差數列.
(1)求的值;
(2)求數列的通項公式;
(3)若數列是首項為1,公比為的等比數列,記,.證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(文)已知等差數列的公差是是該數列的前項和.
(1)求證:;
(2)利用(1)的結論求解:“已知,求”;
(3)若各項均為正數的等比數列的公比為,前項和為.試類比問題(1)的結論,給出一個相應的結論并給出證明.并利用此結論求解問題:“已知各項均為正數的等比數列,其中,求數列的前項和.”

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


已知數列的通項公式,
試求的值,由此推測的計算公式,并用數學歸納法加以證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在4和67之間插入一個項等差數列后,仍構成一個等差數列,且新等差數列的所有項的和是781,則的值為__ ▲ __.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列的通項公式為,達到最小時,=______________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视