精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)的定義域為R,且對任意a,b∈R,都有f(a+b)=f(a)+f(b),且當x>0時,f(x)<0恒成立.
證明:
(1)函數y=f(x)是R上的減函數;
(2)函數y=f(x)是奇函數.
分析:(1)設x1>x2,由已知可得f(x1-x2)<0,再利用f(a+b)=f(a)+f(b)及減函數的定義即可證明.
(2)令a=b=0,則可得f(0)=0;再令a=x,b=-x,即可證明f(x)是奇函數.
解答:證明:(1)設x1>x2,則x1-x2>0,∴f(x1-x2)<0,
而f(a+b)=f(a)+f(b),
∴f(x1)=f(x1-x2+x2)=f(x1-x2)+f(x2)<f(x2
∴函數y=f(x)是R上的減函數;
(2)由f(a+b)=f(a)+f(b)得f(x-x)=f(x)+f(-x)
即f(x)+f(-x)=f(0),而令a=b=0可得f(0)=0
∴f(-x)=-f(x),即函數y=f(x)是奇函數
點評:本題考查了抽象函數的奇偶性和單調性,深刻理解函數奇偶性和單調性的定義及充分利用已知條件是解決問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、已知函數y=f(x)是R上的奇函數且在[0,+∞)上是增函數,若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

2、已知函數y=f(x+1)的圖象過點(3,2),則函數f(x)的圖象關于x軸的對稱圖形一定過點(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是偶函數,當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是定義在R上的奇函數,當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视