【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過4(尾/立方米)時,
的值為
(千克/年);當
時,
是
的一次函數;當
達到
(尾/立方米)時,因缺氧等原因,
的值為
(千克/年).
(1)當時,求函數
的表達式;
(2)當養殖密度為多大時,魚的年生長量(單位:千克/立方米)
可以達到最大,并求出最大值.
科目:高中數學 來源: 題型:
【題目】我國南北朝時期的數學家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處所截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等.已知焦點在x軸上的雙曲線C的離心率e=,焦點到其漸近線的距離為2.直線y=0與y=2在第一象限內與雙曲線C及其漸近線圍成如圖所示的圖形OABN,則它繞y軸旋轉一圈所得幾何體的體積為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
(1)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |||||||||||||||||||||||||||
合格品 | |||||||||||||||||||||||||||||
不合格品 | |||||||||||||||||||||||||||||
合計 | ,求 |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1在(0,π)上有且只有四個實數根,則實數ω的取值范圍為 ( )
A. (,
] B. (
,
] C. (
,
] D. (
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合,
為實數.
(1)若集合是空集,求實數
的取值范圍;
(2)若集合是單元素集,求實數
的值;
(3)若集合中元素個數為偶數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業積極響應國家“科技創新”的號召,大力研發人工智能產品,為了對一批新研發的產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據,如下表所示:
試銷單價 | 1 | 2 | 3 | 4 | 5 | 6 |
產品銷量 | 91 | 86 | 78 | 73 | 70 |
附:參考公式:,
,
參考數據:,
,
.
(1)求的值;
(2)已知變量,
具有線性相關關系,求產品銷量
(件)關于試銷單價
(百元)的線性回歸方程
(計算結果精確到整數位);
(3)用表示用正確的線性回歸方程得到的與
對應的產品銷量的估計值.當銷售數據
的殘差的絕對值
時,則將銷售數據稱為一個“有效數據”.現從這6組銷售數據中任取2組,求抽取的2組銷售數據都是“有效數據”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點,以
軸正半軸為極軸的極坐標中,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點的坐標為
,圓
與直線
交于
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com