精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)=3x+2xf′(1),則曲線f(x)在x=0處的切線在x軸上的截距為(
A.1
B.5ln3
C.﹣5ln3
D.

【答案】D
【解析】解:由題意知,f(x)=3x+2xf′(1),∴f′(x)=(ln3)3x+2f′(1),
令x=1代入上式得,f′(1)=(ln3)3+2f′(1),
解得f′(1)=﹣3ln3,
∴f(x)=3x﹣6(ln3)x,f′(x)=(ln3)3x﹣6ln3,
∴f(0)=1,f′(0)=ln3﹣6ln3=﹣5ln3,
則在x=0處的切線方程是y﹣1=﹣5ln3(x﹣0),即y=﹣5(ln3)x+1,
令y=0代入得,x= ,
∴曲線f(x)在x=0處的切線在x軸上的截距為:
故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若關于某設備的使用年限x(年)和所支出的維修費y(萬元)有如下統計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,yx呈線性相關關系.

(1) 請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程 ;

(2) 估計使用年限為10年時,試求維修費用約是多少?(精確到兩位小數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某路段最高限速60km/h,電子監控測得連續6輛汽車的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某房地產開發商為吸引更多消費者購房,決定在一塊閑置的扇形空地中修建一個花園.如圖,已知扇形AOB的圓心角∠AOB=,半徑為R.現欲修建的花園為OMNH,其中M,H分別在OA,OB,N.設∠MON=θ,OMNH的面積為S.

(1)S表示為關于θ的函數;

(2)S的最大值及相應的θ.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣a|+|x+2|.

(1)當a=1 時,求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1= ,且an+1=an(an+1)(n∈N*),則m= + +…+ 的整數部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)判斷函數的單調性;

(2)若,當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面.

I)求證:平面;

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若曲線的切線經過點,求的方程;

(2)若方程有兩個不相等的實數根,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视