精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=log(x+3)(x2-4x+3).
(1)求f(x)的定義域.
(2)解不等式f(x)<1.
分析:(1)根據對數定義,知
x2-4x+3>0
x+3>0       
x+3≠1       
,解不等式可求
(2)由原等式可得,log(x+3)(x2-4x+3)<log(x+3)(x+3),根據對數函數的單調性,對x+3>1,x+3<1進行討論解不等式即可
解答:解:(1)根據對數定義,知
x2-4x+3>0
x+3>0       
x+3≠1       
x>3或x<1
x>-3       
x≠-2       

所以函數定義域為{x|-3<x<1且x≠-2,或x>3}.
(2)由原等式可得,log(x+3)(x2-4x+3)<log(x+3)(x+3)
?
x+3>1            
x2-4x+3<x+3
x2-4x+3>0    
0<x+3<1        
x2-4x+3>x+3

解可得,-3<x<-2,或0<x<1,或3<x<5
所以不等式的解集為{x|-3<x<-2,或0<x<1,或3<x<5}.
點評:本題主要考查了對數函數的定義域的求解及利用對數函數的單調性解對數不等式,體現了分類討論的思想,在解(2)時注意不要漏掉對所求不等式的真數大于0的考慮.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视