【題目】
如圖,曲線由曲線
和曲線
組成,其中點
為曲線
所在圓錐曲線的焦點,點
為曲線
所在圓錐曲線的焦點;
(1)若,求曲線
的方程;
(2)對于(1)中的曲線,若過點
作直線
平行于曲線
的漸近線,交曲線
于點A、B,求三角形
的面積;
(3)如圖,若直線(不一定過
)平行于曲線
的漸近線,交曲線
于點A、B,求證:弦AB的中點M必在曲線
的另一條漸近線上.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,O為極點,點在曲線
上,直線l過點
且與
垂直,垂足為P.
(1)當時,求
及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市一中學高三年級統計學生的最近20次數學周測成績(滿分150分),現有甲乙兩位同學的20次成績如莖葉圖所示:
(1)根據莖葉圖求甲乙兩位同學成績的中位數,并據此判斷甲乙兩位同學的成績誰更好?
(2)將同學乙的成績的頻率分布直方圖補充完整;
(3)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設選出的2個成績中含甲的成績的個數為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“五行”是中國古代哲學的一種系統觀,廣泛用于中醫、堪輿、命理、相術和占卜等方面.古人把宇宙萬物劃分為五種性質的事物,也即分成木、火、土、金、水五大類,并稱它們為“五行”.中國古代哲學家用五行理論來說明世界萬物的形成及其相互關系,創造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進的關系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關系,具體是:木克土,土克水,水克火、火克金、金克木.現從分別標有木,火,土,金,水的根竹簽中隨機抽取
根,則所抽取的
根竹簽上的五行屬性相克的概率為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,有下列四個命題:①
的值域是
;②
是奇函數;③
在
上單調遞增;④方程
總有四個不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓
,動圓
與圓
外切并且與圓
內切,圓心
的軌跡為曲線
.
(Ⅰ)求的方程;
(Ⅱ)是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點,當圓
的半徑最長時,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,
,前
項和為
,且
.
(1)求,
的值;
(2)證明:數列是等差數列,并寫出其通項公式;
(3)設(
),試問是否存在正整數
,
(其中
,使得
,
,
成等比數列?若存在,求出所有滿足條件的數對
;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com