精英家教網 > 高中數學 > 題目詳情

已知各項均為正數的數列{an}的前n項和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項公式.

an=3n-1

解析解:由a1=S1=(a1+1)(a1+2),
解得a1=1或a1=2,由已知a1=S1>1,因此a1=2.
又由an+1=Sn+1-Sn=(an+1+1)(an+1+2)- (an+1)(an+2),
得(an+1+an)(an+1-an-3)=0,
因為an>0,所以an+1-an-3=0.
即an+1-an=3,從而{an}是公差為3,首項為2的等差數列,故{an}的通項為an=3n-1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知是公差不等于0的等差數列,是等比數列,且.
(1)若,比較的大小關系;
(2)若.(。┡袛是否為數列中的某一項,并請說明理由;
(ⅱ)若是數列中的某一項,寫出正整數的集合(不必說明理由).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為公差不為零的等差數列,首項的部分項、、 、恰為等比數列,且,,.
(1)求數列的通項公式(用表示);
(2)設數列的前項和為, 求證:是正整數

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在等差數列{an}中,a1=31,Sn是它的前n項和,S10=S22.
(1)求Sn;
(2)這個數列的前多少項的和最大,并求出這個最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}的前n項和Sn滿足S3=0,S5=-5.
(1)求{an}的通項公式;
(2)求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

己知各項均不相等的等差數列{an}的前四項和S4=14,且a1,a3,a7成等比數列.
(1)求數列{an}的通項公式;
(2)設Tn為數列的前n項和,若Tn¨對恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}的前5項和為105,且a10=2a5.
(1)求數列{an}的通項公式;
(2)對任意m∈N*,將數列{an}中不大于72m的項的個數記為bm,求數列{bm}的前m項和Sm.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等差數列{an}的各項均為正數,其前n項和為Sn,滿足2S2=a2(a2+1),且a1=1.
(1)求數列{an}的通項公式.
(2)設bn=,求數列{bn}的最小值項.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列{an}滿足a1=2,a2a4=8,且對任意n∈N*,函數f(x)=(anan+1an+2)xan+1cos xan+2sin x滿足f=0.
(1)求數列{an}的通項公式;
(2)若bn=2,求數列{bn}的前n項和Sn.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视