【題目】已知正方體的外接球O的半徑為,則過該正方體的三個頂點的平面截球O所得的截面的面積為( )
A.2π或B.3π或
C.2π或3πD.2π或3π或
科目:高中數學 來源: 題型:
【題目】設兩點在拋物線
上,
是AB的垂直平分線,
(1)當且僅當取何值時,直線
經過拋物線的焦點F?證明你的結論;
(2)若,弦AB是否過定點,若過定點,求出該定點,若不過定點,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
,
,且
滿足
.記點
的軌跡為曲線
.
(1)求的方程,并說明是什么曲線;
(2)若,
是曲線
上的動點,且直線
過點
,問在
軸上是否存在定點
,使得
?若存在,請求出定點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數 | 6 | 24 |
(Ⅰ)求,
,
的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現再從這10人這任選4人,記所選4人的量化總分為,求
的分布列及數學期望
;
(Ⅲ)某評估機構以指標(
,其中
表示
的方差)來評估該校安全教育活動的成效.若
,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,O為極點,點在曲線
上,直線l過點
且與
垂直,垂足為P.
(1)當時,求
及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點C在以AB為直徑的圓上運動,PA⊥平面ABC,且PA=AC,D,E分別是PC,PB的中點.
(1)求證:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B為60°,求直線AB與平面ADE所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓與圓
:
相切,且與圓
:
相內切,記圓心
的軌跡為曲線
.設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
,
兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和
的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(Ⅲ)記的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為
)與此公路所在直線
相切于點
,點
為北半圓。ɑ
)上的一點,過點
作直線
的垂線,垂足為
,計劃在
內(圖中陰影部分)進行綠化,設
的面積為
(單位:
),
(1)設,將
表示為
的函數;
(2)確定點的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,點
在拋物線
上,且
.
(1)求拋物線的方程;
(2)過點作互相垂直的兩條直線,與拋物線分別相交于點
,
、
分別為弦
、
的中點,求
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com