【題目】設點為圓
上的動點,點
在
軸上的投影為
,動點
滿足
,動點
的軌跡為
.
(1)求的方程;
(2)設與
軸正半軸的交點為
,過點
的直線
的斜率為
,
與
交于另一點為
.若以點
為圓心,以線段
長為半徑的圓與
有4個公共點,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程是
(
為參數),以原點
為極點,
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與直線
的直角坐標方程;
(Ⅱ)已知直線與曲線
交于
,
兩點,與
軸交于點
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的離心率為
,
,
分別為橢圓的上頂點和右焦點,
的面積為
,直線
與橢圓交于另一個點
,線段
的中點為
.
(1)求直線的斜率;
(2)設平行于的直線
與橢圓交于不同的兩點
,
,且與直線
交于點
,求證:存在常數
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A,
兩點
.
(Ⅰ)求該橢圓的標準方程;
(Ⅱ)取垂直于x軸的直線與橢圓相交于不同的兩點P,,過P、
作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若
,求圓Q的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】11月11日有2000名網購者在某購物網站進行網購消費(金額不超過1000元),其中女性1100名,男性900名.該購物網站為優化營銷策略,根據性別采用分層抽樣的方法從這2000名網購者中抽取200名進行分析,如表.(消費金額單位:元)
(1)計算的值,在抽出的200名且消費金額在
的網購者中隨機抽出2名發放網購紅包,求選出的2人均為女性的概率;
(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據以上數據列列聯表,并回答能否有
的把握認為“是否為網購達人與性別有關?”附:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學舉行了一次“環保知識競賽”活動. 為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為100分)作為樣本(樣本容量為)進行統計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數據).
(1)求樣本容量和頻率分布直方圖中的
,
的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環保知識宣傳的志愿者活動,設表示所抽取的3名同學中得分在[80,90)的學生人數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為提高黔東南州的整體旅游服務質量,州旅游局舉辦了黔東南州旅游知識競賽,參賽單位為本州內各旅游協會,參賽選手為持證導游.現有來自甲旅游協會的導游3名,其中高級導游2名;乙旅游協會的導游5名,其中高級導游3名.從這8名導游中隨機選擇4人 參加比賽.
(Ⅰ)設為事件“選出的4人中恰有2名高級導游,且這2名高級導游來自同一個旅游協會”,求事件
發生的概率.
(Ⅱ)設為選出的4人中高級導游的人數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)在極坐標系下,設曲線與射線
和射線
分別交于
,
兩點,求
的面積;
(2)在直角坐標系下,直線的參數方程為
(
為參數),直線
與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com