精英家教網 > 高中數學 > 題目詳情

已知二次函數f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個相等的實根,求f(x)的解析式;
(2)若f(x)的最大值為正數,求實數a的取值范圍.

(1)∵不等式f(x)>-2x的解集為(1,3),
∴x=1和x=3是方程ax2+(b+2)x+c=0(a<0)的兩根,
∴,∴b=-4a-2,c=3a,
又方程f(x)+6a=0有兩個相等的實根.
∴Δ=b2-4a(c+6a)=0,∴4(2a+1)2-4a×9a=0.
∴(5a+1)(1-a)=0,∴a=-或a=1(舍).
∴a=-,b=-,c=-,
∴f(x)=-x2-x-.
(2)由(1)知f(x)=ax2-2(2a+1)x+3a
=a2-+3a
=a2
∵a<0,
∴f(x)的最大值為,
∵f(x)的最大值為正數.

∴解得a<-2-或-2+<a<0.
∴所求實數a的取值范圍是∪(-2+,0).

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(13分)已知的反函數為
(1)若函數在區間上單增,求實數的取值范圍;
(2)若關于的方程內有兩個不相等的實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題



(1)求解析式并判斷的奇偶性;
(2)對于(1)中的函數,若時都有成立,求滿足條件的實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)在(-1,1)上有定義,當且僅當0<x<1時f(x)<0,且對任意x、y∈(-1,1)都有f(x)+f(y)=f,試證明:
(1)f(x)為奇函數;
(2)f(x)在(-1,1)上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知9x-10·3x+9≤0,求函數y=x-1-4x+2的最大值和最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知y=f(x)滿足f(n-1)=f(n)-lg an-1(n≥2,n∈N)且f(1)=-lg a,是否存在實數α,β,使f(n)=(αn2+βn-1)·lg a對任何n∈N*都成立,證明你的結論

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠生產某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少時,零件的實際出廠單價恰為51元;
(2)設一次訂購量為x個,零件的實際出廠單價為P元,寫出函數P=f(x)的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少?如果訂購1 000個,利潤又是多少?(工廠售出一個零件的利潤=實際出廠單價-成本

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

((本題滿分15分)
已知三個函數其中第二個函數和第三個函數中的為同一個常數,且,它們各自的最小值恰好是方程的三個根.
(Ⅰ) 求證:;
(Ⅱ) 設是函數的兩個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知奇函數有最大值, 且, 其中實數是正整數.
的解析式;
, 證明(是正整數).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视