【題目】已知焦點在軸上的橢圓
的中心是原點
,離心率為雙曲線
離心率的一半,直線
被橢圓
截得的線段長為
.直線
:
與
軸交于點
,與橢圓
交于
兩個相異點,且
.
(1)求橢圓的方程;
(2)是否存在實數,使
?若存在,求
的取值范圍;若不存在,請說明理由.
【答案】(Ⅰ) ;(Ⅱ)
或
或
.
【解析】試題分析:(Ⅰ)設出橢圓的標準方程,利用離心率、四邊形的周長進行求解;(Ⅱ)利用平面向量的線性運算得到的關系,聯立直線與橢圓的方程,得到關于
的一元二次方程,利用橢圓的對稱性、平面向量的坐標運算和判別式進行求解.
試題解析:(Ⅰ)根據已知設橢圓的方程為
,焦距為
,
由已知得,∴
.
∵以橢圓的長軸和短軸為對角線的四邊形的周長為
,
∴.
∴橢圓的方程為
.
(Ⅱ)根據已知得,由
,得
.
∴.∵
,∴
,
若,由橢圓的對稱性得
,即
.
∴能使
成立.
若,則
,解得
.
設,由
得
,
由已知得,即
.
且.…10分
由得
,即
.∴
,
∴,即
.
當時,
不成立.∴
,
∵,∴
,即
.
∴,解得
或
.
綜上述,當或
或
時,
.
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“數學物理不分家,如果物理成績好,那么學習數學就沒什么問題!蹦嘲噌槍Α案咧猩锢韺W習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論。現從該班隨機抽取5位學生在一次考試中的數學和物理成績,如下表:
(1)求數學成績y對物理成績x的線性回歸方程。若某位學生的物理成績為80分,預測他的數學成績;
(2)要從抽取的這5位學生中隨機抽取2位參加一項知識競賽,求選中的學生的數學成績至少有一位高于120分的概率。(參考公式: 參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某項科研活動共進行了5次試驗,其數據如下表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
555 | 559 | 551 | 563 | 552 | |
601 | 605 | 597 | 599 | 598 |
(1)從5次特征量的試驗數據中隨機地抽取兩個數據,求至少有一個大于600的概率;
(2)求特征量關于
的線性回歸方程
;并預測當特征量
為570時特征量
的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓和點
,動圓
經過點
且與圓
相切,圓心
的軌跡為曲線
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,點
在曲線
上,若直線
的斜率
滿足
求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取名學生的成績進行統計,作出的莖葉圖如下圖,記成績不低于
分者為“成績優良”.
(1)分別計算甲、乙兩班個樣本中,化學分數前十的平均分,并據此判斷哪種教學方式的教學效果更
佳;
(2)甲、乙兩班個樣本中,成績在
分以下(不含
分)的學生中任意選取
人,求這
人來自不同班級的概率;
(3)由以上統計數據填寫下面列聯表,并判斷能否在犯錯誤的概率不超過
的前提下認為“成績優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
附:
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:y=3x+3,求:
(1)點P(4,5)關于直線l的對稱點坐標;
(2)直線l1:y=x-2關于直線l的對稱直線的方程;
(3)直線l關于點A(3,2)的對稱直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的橢圓的兩焦點分別為雙曲線
的頂點,直線
與橢圓
交于
、
兩點,且
,點
是橢圓
上異于
、
的任意一點,直線
外的點
滿足
,
.
(1)求點的軌跡方程;
(2)試確定點的坐標,使得
的面積最大,并求出最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com