【題目】某市居民用水擬實行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費,超出w立方米的部分按10元/立方米收費,從該市隨機調查了10000位居民,獲得了他們某月的用水量數據,整理得到如圖頻率分布直方圖:
(1)如果w為整數,那么根據此次調查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(2)假設同組中的每個數據用該組區間的右端點值代替,當w=3時,估計該市居民該月的人均水費.
【答案】
(1)
解:由頻率分布直方圖得:
用水量在[0.5,1)的頻率為0.1,
用水量在[1,1.5)的頻率為0.15,
用水量在[1.5,2)的頻率為0.2,
用水量在[2,2.5)的頻率為0.25,
用水量在[2.5,3)的頻率為0.15,
用水量在[3,3.5)的頻率為0.05,
用水量在[3.5,4)的頻率為0.05,
用水量在[4,4.5)的頻率為0.05,
∵用水量小于等于3立方米的頻率為85%,
∴為使80%以上居民在該用的用水價為4元/立方米,
∴w至少定為3立方米
(2)
解:當w=3時,該市居民的人均水費為:
(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,
∴當w=3時,估計該市居民該月的人均水費為10.5元
【解析】(1)由頻率分布直方圖得:用水量在[0.5,1)的頻率為0.1,用水量在[1,1.5)的頻率為0.15,用水量在[1.5,2)的頻率為0.2,用水量在[2,2.5)的頻率為0.25,用水量在[2.5,3)的頻率為0.15,用水量在[3,3.5)的頻率為0.05,用水量在[3.5,4)的頻率為0.05,用水量在[4,4.5)的頻率為0.05,由此能求出為使80%以上居民在該用的用水價為4元/立方米,w至少定為3立方米.
(2)當w=3時,利用頻率分布直方圖能求出該市居民的人均水費.
本題考查頻率分布直方圖的應用,考查當w=3時,該市居民該月的人均水費的估計的求法,是中檔題,解題時要認真審題,注意頻率分布直方圖的合理運用.
科目:高中數學 來源: 題型:
【題目】下面使用類比推理正確的是( )
A. 由“a(b+c)=ab+ac”類比推出“cos(α+β)=cosα+cosβ”
B. 由“若3a<3b,則a<b”類比推出“若ac<bc,則a<b”
C. 由“平面中垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D. 由“等差數列{an}中,若a10=0,則a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”類比推出“在等比數列{bn}中,若b9=1,則有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面
為菱形,
,側面
是邊長為
的正三角形,側面
底面
.
()設
的中點為
,求證:
平面
.
()求斜線
與平面
所成角的正弦值.
()在側棱
上存在一點
,使得二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是
;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(1)“星隊”至少猜對3個成語的概率;
(2)“星隊”兩輪得分之和為X的分布列和數學期望EX.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com