精英家教網 > 高中數學 > 題目詳情

【題目】某媒體對“男女延遲退休”這一公眾關注的問題進行了民意調查,如表是在某單位得到的數據(人數):
(1)能否有90%以上的把握認為對這一問題的看法與性別有關?

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25


(2)從贊同“男女延遲退休”16人中選出3人進行陳 述發言,求事件“男士和女士各至少有1人發言”的概率;
(3)若以這25人的樣本數據來估計整個地區的總體數據,現從該地區(人數很多)任選5人,記贊同“男女延遲退休”的人數為X,求X的數學期望.
附:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

【答案】
(1)解:K2= ≈2.932>2.706,

由此可知,有90%以上的把握認為對這一問題的看法與性別有關


(2)解:記題設事件為A,則所求概率為P(A)= =
(3)解:根據題意,X~B(5, ),∴E(X)=5× =
【解析】(1)求出K2 , 與臨界值比較,即可得出結論;(2)求出基本事件的個數,利用古典概型的概率公式求解即可;(3)根據題意,X~B(5, ),利用公式求出X的數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】【2017湖南長沙二!磕撤N產品的質量以其質量指標值衡量,并依據質量指標值劃分等極如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據以上抽樣調查數據 ,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品90%”的規定?

(2)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;

(3)該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分設數列的前項和為,已知,.

1求數列的通項公式;

2證明:對一切正整數,有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.

(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)滿足g(x)=g′(1)ex1﹣g(0)x+ ,且存在實數x0使得不等式2m﹣1≥g(x0)成立,則m的取值范圍為(
A.(﹣∞,2]
B.(﹣∞,3]
C.[1,+∞)
D.[0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnax﹣ (a≠0).
(1)求此函數的單調區間及最值;
(2)求證:對于任意正整數n,均有1+ + …+ ≥ln (e為自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線系M:xcosθ+ysinθ=1,對于下列四個命題:
①不在直線系M中的點都落在面積為π的區域內
②直線系M中所有直線為一組平行線
③直線系M中所有直線均經過一個定點
④對于任意整數n(n≥3),存在正n邊形,其所有邊均在直線系M中的直線上
其中真命題的代號是(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側, =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個單位后得到的圖象關于原點對稱,則函數f(x)的圖象(
A.關于直線x= 對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于點( ,0)對稱

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视