精英家教網 > 高中數學 > 題目詳情
求函數y=2tan(-2x)的定義域、值域、對稱中心、并指出它的周期、奇偶性和單調性.
解;
因為-2xk+,所以2xk+,所以x+,
而由于函數y=tanx的值域為R,因此y=2tan(-2x)的值域也是R,
因為y=tanx的對稱中心即為(,0),所以y=2tan(-2x)對稱中心為
(-,0),
而利用周期公式T=,因為f(-x) f(x), f(-x) -f(x)因此是非奇函數也非偶函數。
而當-2x時,函數單調遞減,則減區間為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

為了得到函數的圖象可以將函數的圖象
A.向左平移個單位B.向右平移個單位
C.向左平移個單位D.向右平移個單位

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求的最小正周期;
(2)若,求的最大值、最小值及相應的x的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數=1++cos在(0,2p)上是
A.增函數B.減函數
C.在(0,p)上增,在(p,2p)上減D.在(0,p)上減,在(p,2p)上增

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,)為偶函數,若對于任意都有成立,且的最小值是為.將函數的圖象向右平移個單位后,得到函數,求的單調遞減區間,確定其對稱軸。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

將函數f(x)=cos(2x)的圖象向左平移個單位,再將圖象上各點的橫坐標壓縮到原來的,那么所得到的圖象的解析表達式為 (  。  
A.y=" cos" 4xB.y= cos xC.y=" cos" (4x+)D.y=" cos" (x+)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數為常數,)的部分圖象如圖所示,則f(0)=
A.B.C.0D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,把的圖象按向量平移后,圖象恰好為函數的圖象,則的值可以為         (     )              
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求的值;
(2)求的最大值及相應的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视