精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,曲線C的參數方程為為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.

【答案】1,(2

【解析】

1)利用,消去參數,將曲線C的參數方程化為普通方程,再運用 ,,將曲線C的直角坐標方程化為極坐標方程;

(2)根據條件求出直線l具有幾何意義的參數方程,代入曲線C普通方程,利用韋達定理以及直線參數的幾何意義,即可求解.

1)因為曲線C的參數方程為

,(為參數),

所以曲線C的直角坐標方程為

,

,,

代入上式得.

2)直線l的參數方程為,(t為參數),

代入,

整理得

設點M,N所對應的參數分別為,

,,

因為,異號,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數方程為t為參數),直線與曲線C相交于A,B兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若,解不等式;

(Ⅱ)設是函數的四個不同的零點,問是否存在實數,使得其中三個零點成等差數列?若存在,求出所有的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業生涯做好準備.某高中成功開設大學先修課程已有兩年,共有250人參與學習先修課程.

(Ⅰ)這兩年學校共培養出優等生150人,根據下圖等高條形圖,填寫相應列聯表,并根據列聯表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優等生有關系?

優等生

非優等生

總計

學習大學先修課程

250

沒有學習大學先修課程

總計

150

(Ⅱ)某班有5名優等生,其中有2名參加了大學生先修課程的學習,在這5名優等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,為矩形,為等腰梯形,,,且,平面平面,,分別為,的中點.

(Ⅰ)求證:平面

(Ⅱ)若,求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年寒假,因為新冠疫情全體學生只能在家進行網上學習,為了研究學生網上學習的情況,某學校隨機抽取名學生對線上教學進行調查,其中男生與女生的人數之比為,抽取的學生中男生有人對線上教學滿意,女生中有名表示對線上教學不滿意.

1)完成列聯表,并回答能否有的把握認為對線上教學是否滿意 與性別有關;

態度

性別

滿意

不滿意

合計

男生

女生

合計

100

2)從被調查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這名學生中抽取名學生,作線上學習的經驗介紹,求其中抽取一名男生與一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直,平面,平面

(1)求證:平面平面;

(2)若,求二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為拋物線上的兩點,的中點的縱坐標為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點,為拋物線(除原點外)上的不同兩點,直線的斜率分別為,,且滿足,記拋物線、處的切線交于點線段的中點為,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示,早在公元480年左右,南北朝時期的數學家祖沖之就得出精確到小數點后7位的結果,他是世界上第一個把圓周率的數值計算到小數點后第七位的人,這比歐洲早了約1000年,在生活中,我們也可以通過設計下面的實驗來估計的值;從區間內隨機抽取200個數,構成100個數對,其中滿足不等式的數對共有11個,則用隨機模擬的方法得到的的近似值為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视