【題目】在平面直角坐標系中,曲線C的參數方程為(
為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為=
(
>0),過點
的直線
的參數方程為
(t為參數),直線
與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)若,解不等式
;
(Ⅱ)設是函數
的四個不同的零點,問是否存在實數
,使得其中三個零點成等差數列?若存在,求出所有
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業生涯做好準備.某高中成功開設大學先修課程已有兩年,共有250人參與學習先修課程.
(Ⅰ)這兩年學校共培養出優等生150人,根據下圖等高條形圖,填寫相應列聯表,并根據列聯表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優等生有關系?
優等生 | 非優等生 | 總計 | |
學習大學先修課程 | 250 | ||
沒有學習大學先修課程 | |||
總計 | 150 |
(Ⅱ)某班有5名優等生,其中有2名參加了大學生先修課程的學習,在這5名優等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假,因為“新冠”疫情全體學生只能在家進行網上學習,為了研究學生網上學習的情況,某學校隨機抽取名學生對線上教學進行調查,其中男生與女生的人數之比為
,抽取的學生中男生有
人對線上教學滿意,女生中有
名表示對線上教學不滿意.
(1)完成列聯表,并回答能否有
的把握認為“對線上教學是否滿意 與性別有關”;
態度 性別 | 滿意 | 不滿意 | 合計 |
男生 | |||
女生 | |||
合計 | 100 |
(2)從被調查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這
名學生中抽取
名學生,作線上學習的經驗介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、
為拋物線
上的兩點,
與
的中點的縱坐標為4,直線
的斜率為
.
(1)求拋物線的方程;
(2)已知點,
、
為拋物線
(除原點外)上的不同兩點,直線
、
的斜率分別為
,
,且滿足
,記拋物線
在
、
處的切線交于點
,線段
的中點為
,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示,早在公元480年左右,南北朝時期的數學家祖沖之就得出精確到小數點后7位的結果,他是世界上第一個把圓周率的數值計算到小數點后第七位的人,這比歐洲早了約1000年,在生活中,我們也可以通過設計下面的實驗來估計
的值;從區間
內隨機抽取200個數,構成100個數對
,其中滿足不等式
的數對
共有11個,則用隨機模擬的方法得到的
的近似值為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com