【題目】某客戶準備在家中安裝一套凈水系統,該系統為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.
其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現需決策安裝凈水系統的同時購買濾芯的數量,為此參考了根據100套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.
表1:一級濾芯更換頻數分布表
一級濾芯更換的個數 | 8 | 9 |
頻數 | 60 | 40 |
圖2:二級濾芯更換頻數條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發生的概率.
(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16的概率;
(2)記表示該客戶的凈水系統在使用期內需要更換的二級濾芯總數,求
的分布列及數學期望;
(3)記分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若
,且
,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定
的值.
【答案】(1)0.024;(2)分布列見解析,;(3)
【解析】
(1)由題意可知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數分布表和二級濾芯更換頻數條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;
(2)由二級濾芯更換頻數條形圖可知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到
的分布列及數學期望;
(3)由,且
,可知若
,則
,或若
,則
,再分別計算兩種情況下的所需總費用的期望值比較大小即可.
(1)由題意知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設“一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16”為事件,
因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.
(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,
從而,
,
.
所以的分布列為
8 | 9 | 10 | 11 | 12 | |
0.04 | 0.16 | 0.32 | 0.32 | 0.16 |
(個).
或用分數表示也可以為
8 | 9 | 10 | 11 | 12 | |
(個).
(3)解法一:記表示該客戶的凈水系統在使用期內購買各級濾芯所需總費用(單位:元)
因為,且
,
1°若,則
,
(元);
2°若,則
,
(元).
因為,故選擇方案:
.
解法二:記分別表示該客戶的凈水系統在使用期內購買一級濾芯和二級濾芯所需費用(單位:元)
1°若,則
,
的分布列為
1280 | 1680 | |
0.6 | 0.4 | |
880 | 1080 | |
0.84 | 0.16 |
該客戶的凈水系統在使用期內購買的各級濾芯所需總費用為(元);
2°若,則
,
的分布列為
800 | 1000 | 1200 | |
0.52 | 0.32 | 0.16 |
(元).
因為
所以選擇方案:.
科目:高中數學 來源: 題型:
【題目】傳染病的流行必須具備的三個基本環節是:傳染源、傳播途徑和人群易感性.三個環節必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區已經出現了新冠狀病毒的感染病人,為了掌握該地區居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?
(2)用樣本估計總體,若從該地區出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,
表示被清華、北大等名校錄取的學生人數)
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點圖發現與
之間具有線性相關關系,求
關于
的線性回歸方程;(保留兩位有效數字)
(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該?既嗣5娜藬;
(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.
參考公式:,
參考數據:,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
是線段
上的動點,則下列說法正確的是( )
A.無論點在
上怎么移動,都有
B.當點移動至
中點時,才有
與
相交于一點,記為點
,且
C.無論點在
上怎么移動,異面直線
與
所成角都不可能是
D.當點移動至
中點時,直線
與平面
所成角最大且為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
,直線
交曲線
于
兩點,
為
中點.
(1)求曲線的直角坐標方程和點
的軌跡
的極坐標方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鮮花店根據以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區間的頻率視為概率,且假設每天的銷售量相互獨立.
(1)求在未來的連續4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來4天里日銷售量不低于100枝的天數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com