精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f (x)= 的定義域集合是A,函數g(x)=lg[x2﹣(2a+1)x+a2+a]的定義域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求實數a的取值范圍.

【答案】
(1)解:由題意 所以 A={x|x≤﹣1或x>2};

x2﹣(2a+1)x+a2+a>0 B={x|x<a或x>a+1}


(2)解:由A∪B=B得AB,

因此

解得:﹣1<a≤1,

∴實數a的取值范圍是(﹣1,1]


【解析】(1)被開方數≥0,求A,對數的真數>0求出B.(2)由題意A是B的子集,可解出實數a的取值范圍.
【考點精析】掌握集合的并集運算和函數的定義域及其求法是解答本題的根本,需要知道并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知定義域為(0,+∞)的函數f(x)滿足:
①x>1時,f(x)<0;
②f( )=1;
③對任意的正實數x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內為減函數;
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求值
(1)已知f(3x)=xlg9,求f(2)+f(5)的值;
(2)若3a=5b=A(ab≠0),且 =2,求A的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】廣播電臺為了了解某地區的聽眾對某個戲曲節目的收聽情況,隨機抽取了100名聽眾進行調查,下面是根據調查結果繪制的聽眾日均收聽該節目的頻率分布直方圖,將日均收聽該節目時間不低于40分鐘的聽眾成為“戲迷”

(1)根據已知條件完成2×2列聯表,并判斷“戲迷”與性別是否有關?

“戲迷”

非戲迷

總計

10

55

總計

附:K2= ,

P(K2≥k)

0.05

0.01

k

3.841

6.635


(2)將上述調查所得到的頻率當作概率.現在從該地區大量的聽眾中,采用隨機抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數為X,若每次抽取的結果相互獨立,求X的分布列,數學期望及方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中, 分別為棱的中點.

(1)在平面內過點平面于點,并寫出作圖步驟,但不要求證明.

(2)若側面側面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x|x﹣a|,若對于任意x1 , x2∈[3,+∞),x1≠x2 , 不等式 >0恒成立,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形, 平面, . 分別是線段的中點.

(Ⅰ)求證: 平面

(Ⅱ)求與平面所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系xOy中,曲線C:(x﹣1)2+y2=1.直線l經過點P(m,0),且傾斜角為 .以O為極點,以x軸正半軸為極軸,建立坐標系.
(1)寫出曲線C的極坐標方程與直線l的參數方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(ex)=ax2﹣x,a∈R.
(1)求f(x)的解析式;
(2)求x∈(0,1]時,f(x)的值域;
(3)設a>0,若h(x)=[f(x)+1﹣a]logxe對任意的x1 , x2∈[e3 , e1],總有|h(x1)﹣h(x2)|≤a+ 恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视