精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)
已知數列滿足,數列滿足.
(1)求證:數列是等差數列;
(2)設,求滿足不等式的所有正整數的值.

(1)證明:由,計算中,得
即得。(2)滿足不等式的所有正整數的值為2,3,4。

解析試題分析:(1)證明:由,則。
代入中,得,
即得。所以數列是等差數列!6分
(2)解:因為數列是首項為,公差為等差數列,
,則!8分
從而有,
!11分
,由,得
,得
故滿足不等式的所有正整數的值為2,3,4!14分
考點:本題主要考查等差數列、等比數列的的基礎知識,“公式法”求和,放縮法證明不等式。
點評:中檔題,本題綜合考查等差數列、等比數列的基礎知識,本解答從確定通項公式入手,明確了所研究數列的特征!肮椒ā鼻髷盗械那皀項和是高考常?嫉綌盗星蠛头椒。不等式的證明應用了“放縮法”。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題


已知正項數列的前項和為,且 .
(1)求的值及數列的通項公式;
(2)求證:;
(3)是否存在非零整數,使不等式
對一切都成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是公比大于1的等比數列,為數列的前項和,已知,且構成等差數列.
(1)求數列的通項公式;
(2)令,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足:,其中的前n項和.
(1)求的通項公式;
(2)若數列滿足,求的前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知數列為等差數列,且
(1)求數列的通項公式;
(2)證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列的各項均為正數,為其前項和,對于任意,總有成等差數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分16分)數列的前項和記為,且滿足
(1)求數列的通項公式;
(2)求和;
(3)設有項的數列是連續的正整數數列,并且滿足:

問數列最多有幾項?并求這些項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知數列滿足條件:,
(1)判斷數列是否為等比數列;  
(2)若,令, 記
證明: 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知等差數列的前四項和為10,且成等比數列
(1)求通項公式
(2)設,求數列的前項和

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视