已知拋物線C:的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且
.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
(1);(2)x-y-1=0或x+y-1=0.
解析試題分析:(1)設Q(x0,4),代入由中得x0=
,在根據拋物線的性質可得
,解出p即可
(2)設直線l的方程為,(m≠0)代入
中得
,直線
的方程為
,將上式代入
中,并整理得
.A(x1,y1),B(x2,y2), M(x3,y3),N(x4,y4),根據二次函數根與系數的關系可得y1+y2=4m,y1y2=-4,
.然后求出MN的中點為E和AB的中點為D坐標的表達式,計算
的表達式,根據
求出m即可.
試題解析:(1)設Q(x0,4),代入由中得x0=
,
所以,由題設得
,解得p=-2(舍去)或p=2.
所以C的方程為.
(2)依題意知直線l與坐標軸不垂直,故可設直線l的方程為,(m≠0)代入
中得
,
設A(x1,y1),B(x2,y2),則y1+y2=4m,y1y2=-4,
故AB的中點為D(2m2+1,2m),,
有直線的斜率為-m,所以直線
的方程為
,將上式代入
中,并整理得
.
設M(x3,y3),N(x4,y4),則.
故MN的中點為E().
由于MN垂直平分AB,故A,M,B,N四點在同一個圓上等價于,從而
,即
,化簡得
m2-1=0,解得m=1或m=-1,
所以所求直線l的方程為x-y-1=0或x+y-1=0.
考點:1.拋物線的性質和方程;2.直線方程以及直線與曲線的位置關系.
科目:高中數學 來源: 題型:解答題
已知橢圓 的離心率為
,過
的左焦點
的直線
被圓
截得的弦長為
.
(1)求橢圓的方程;
(2)設的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:+
=1(a>b>0)的右焦點,且被圓C所截得的弦長為
,點A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求·
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓,稱圓心在坐標原點O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是
.
(1)若橢圓C上一動點滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為
,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知F1,F2是橢圓C:+
=1(a>b>0)的左、右焦點,點P(-
,1)在橢圓上,線段PF2與y軸的交點M滿足
+
=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動點N(x0,y0)關于直線y=2x的對稱點為N1(x1,y1),求3x1-4y1的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知雙曲線的兩條漸近線分別為
.
(1)求雙曲線的離心率;
(2)如圖,為坐標原點,動直線
分別交直線
于
兩點(
分別在第一,四象限),且
的面積恒為8,試探究:是否存在總與直線
有且只有一個公共點的雙曲線
?若存在,求出雙曲線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com