【題目】已知橢圓的離心率為
,
,
分別是橢圓的左右焦點,過點
的直線交橢圓于
,
兩點,且
的周長為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點作斜率為
的直線
與橢圓
交于兩點
,
,試判斷在
軸上是否存在點
,使得
是以
為底邊的等腰三角形若存在,求點
橫坐標的取值范圍,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】 已知函數f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,給出以下四個命題:(1)當
時,
單調遞減且沒有最值;(2)方程
一定有實數解;(3)如果方程
(
為常數)有解,則解得個數一定是偶數;(4)
是偶函數且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
(
)的右焦點為
,短軸的一個端點
到
的距離等于焦距.
(1)求橢圓的標準方程;
(2)設、
是四條直線
,
所圍成的矩形在第一、第二象限的兩個頂點,
是橢圓
上任意一點,若
,求證:
為定值;
(3)過點的直線
與橢圓
交于不同的兩點
、
,且滿足△
與△
的面積的比值為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓C的“相關圓”E為:
.若拋物線
的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關圓”E的方程;
(2)過“相關圓”E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:
為定值(
為坐標原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的長軸長與焦距比為2:1,左焦點F(﹣2,0),一定點為P(﹣8,0).
(1)求橢圓E的標準方程;
(2)過P的直線與橢圓交于P1、P2兩點,設直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0.
(3)求△P1P2F面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com