精英家教網 > 高中數學 > 題目詳情
(2012•黃浦區二模)一盒中有7件正品,3件次品,無放回地每次取一件產品,直至取到正品.已知抽取次數ξ 的概率分布律如下表:
x 1 2 3 4
P(ξ=x)
7
10
7
30
7
120
1
120
那么抽取次數ξ的數學期望Eξ=
11
8
11
8
分析:根據抽取次數ξ 的概率分布列,利用期望公式可得結論.
解答:解:根據抽取次數ξ 的概率分布列,利用期望公式可得
Eξ=1×
7
10
+2×
7
30
+3×
7
120
+4×
1
120
=
11
8

故答案為:
11
8
點評:本題考查離散型隨機變量的分布列與數學期望,正確運用公式是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃浦區二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,則cos2α=
63
65
63
65

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區二模)對n∈N*,定義函數fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數.
(3)對n∈N*,n≥2,在區間[0,n]上定義函數y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數解的個數(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點,C1是圓柱上底面弧A1B1的中點,那么異面直線AC1與BC所成角的正切值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區二模)已知函數f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
①當且僅當a=0時,f(x)是偶函數;
②函數f(x)一定存在零點;
③函數在區間(-∞,a]上單調遞減;
④當0<a<1時,函數f(x)的最小值為a-a2
那么所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區二模)函數f(x)=log
1
2
(2x+1)
的定義域為
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视