【題目】為探索課堂教學改革,惠來縣某中學數學老師用傳統教學和“導學案”兩種教學方式,在甲、乙兩個平行班進行教學實驗.為了解教學效果,期末考試后,分別從兩個班級各隨機抽取20名學生的成績進行統計,得到如下莖葉圖.記成績不低于70分者為“成績優良”.
(Ⅰ)分析甲、乙兩班的樣本成績,大致判斷哪種教學方式的教學效果更佳,并說明理由;
(Ⅱ)由以上統計數據完成下面的列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績是否優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
參考公式:,其中
是樣本容量.
獨立性檢驗臨界值表:
【答案】(Ⅰ)見解析(Ⅱ)能
【解析】
(Ⅰ)根據莖葉圖中數據的特征,可知數據越集中,成績越穩定,也即是效果越好,進而可得出結果;
(Ⅱ)根據題意寫出列聯表,結合表中數據求出的觀測值,結合臨界值表,即可求出結果.
(Ⅰ)乙班(“導學案”教學方式)教學效果更佳.
理由1、乙班大多在70以上,甲班70分以下的明顯更多;
理由2、甲班樣本數學成績的平均分為:70.2;乙班樣本數學成績前十的平均分為:79.05,高10%以上.
理由3、甲班樣本數學成績的中位數為, 乙班樣本成績的中位數
,高10%以上.
(Ⅱ)列聯表如下:
甲班 | 乙班 | 總計 | |
成績優良 | 10 | 16 | 26 |
成績不優良 | 10 | 4 | 14 |
總計 | 20 | 20 | 40 |
由上表可得.
所以能在犯錯誤的概率不超過0.05的前提下認為“成績是否優良與教學方式有關”.
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
在線段
上運動,則下列判斷中正確的是( )
①平面平面
;
②平面
;
③異面直線與
所成角的取值范圍是
;
④三棱錐的體積不變.
A. ①② B. ①②④ C. ③④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面
截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車品牌為了了解客戶對于其旗下的五種型號汽車的滿意情況,隨機抽取了一些客戶進行回訪,調查結果如下表:
汽車型號 | I | II | III | IV | V |
回訪客戶(人數) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指:某種型號汽車的回訪客戶中,滿意人數與總人數的比值.
(Ⅰ) 從III型號汽車的回訪客戶中隨機選取1人,則這個客戶不滿意的概率為________;
(Ⅱ) 從所有的客戶中隨機選取1個人,估計這個客戶滿意的概率;
(Ⅲ) 汽車公司擬改變投資策略,這將導致不同型號汽車的滿意率發生變化.假設表格中只有兩種型號汽車的滿意率數據發生變化,那么哪種型號汽車的滿意率增加0.1,哪種型號汽車的滿意率減少0.1,使得獲得滿意的客戶人數與樣本中的客戶總人數的比值達到最大?(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于命題的說法錯誤的是( )
A. 命題“若,則
”的逆否命題為“若
,則
”
B. “”是“函數
在區間
上為增函數”的充分不必要條件
C. 命題“,使得
”的否定是“
,均有
”
D. “若為
的極值點,則
”的逆命題為真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某種書籍每冊的成本費(元)與印刷冊數
(千冊)的數據作了初步處理,得到下面的散點圖及一些統計量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
其中,
.
為了預測印刷千冊時每冊的成本費,建立了兩個回歸模型:
,
.
(1)根據散點圖,你認為選擇哪個模型預測更可靠?(只選出模型即可)
(2)根據所給數據和(1)中的模型選擇,求關于
的回歸方程,并預測印刷
千冊時每冊的成本費.
附:對于一組數據,
,…,
,其回歸方程
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com