精英家教網 > 高中數學 > 題目詳情
已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象;
(3)求方程xf[g(x)]=2g[f(x)]的解.
分析:(1)根據自變量的范圍選擇對應的解析式代入求解,(2)先求出解析式,再畫函數圖象(分段函數),(3)先將方程化簡一下,再求解.
解答:解:(1)當1≤x<2時,x-1≥0,x-2<0,
g(x)=
6-1
2
=
5
2

(2)由(1)知,當1≤x<2時,g(x)=
6-1
2
=
5
2

當x<1時,x-1<0,x-2<0,故g(x)=
3-1
2
=1

當x≥2時,x-1>0,x-2≥0,故g(x)=
6-2
2
=2

所以當x∈R時,g(x)的解析式為g(x)=
1,x<1
5
2
,1≤x<2
2,x≥2

其函數圖象為
(3)∵g(x)>0,∴f[g(x)]=2,x∈R
g[f(x)]=
g(1)=
5
2
,x<0
g(2)=2,x≥0

所以方程xf[g(x)]=2g[f(x)]為x2=
5,x<0
4,x≥0

解得x=-
5
,或x=2
點評:本題考察函數解析式的求解、分段函數圖象的畫法以及方程的求解,屬中檔題.此題環環相扣,解答時要體會此題設計的巧妙之處.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設已知f(x)=2cos2x+
3
sin2x+a,(a∈R)

(1)若x∈R,求f(x)的單調增區間;
(2)若x∈[0,
π
2
]
時,f(x)的最大值為4,求a的值;
(3)在(2)的條件下,求滿足f(x)=1且x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•茂名二模)已知f′(x)是f(x)的導函數,f(x)=ln(x+1)+m-2f′(1),m∈R,且函數f(x)的圖象過點(0,-2).
(1)求函數y=f(x)的表達式;
(2)設g(x)=
1x+1
+af(x),(a≠0)
,若g(x)>0在定義域內恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年黑龍江省高三上學期期末考試數學理卷 題型:選擇題

下列說法錯誤的是            ( 。

    A.命題:“已知f(x)是R上的增函數,若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”的逆否命題為真命題

    B.命題p:“∃x∈R,使得x2+x+1<0”,則   p:“∀x∈R,均有x2+x+1≥0”

    C.若p且q為假命題,則p、q均為假命題

    D.“x>1”是“|x|>1”的充分不必要條件

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视