如圖,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面⊥平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.
本題主要考察異面直線所成的角、平面與平面垂直、二面角、三棱錐體積等有關知識,考察思維能力和空間想象能力、應用向量知識解決數學問題的能力、化歸轉化能力和推理運算能力。
解法一:
(Ⅰ)∵
∴,
又∵
∴
(Ⅱ)取的中點
,則
,連結
,
∵,∴
,從而
作,交
的延長線于
,連結
,則由三垂線定理知,
,
從而為二面角
的平面角
直線與直線
所成的角為
∴
在中,由余弦定理得
在Rt中,
在Rt中,
在Rt中,
故二面角的平面角大小為
(Ⅲ)由(Ⅱ)知,PCNM為正方形
∴
解法二:(Ⅰ)同解法一
(Ⅱ)在平面內,過
作
,建立空間直角坐標系
(如圖)
由題意有
,設
,
則
由直線與直線
所成的解為
,得
,即
,解得
∴,設平面
的一個法向量為
,
則,取
,得
平面的法向量取為
設與
所成的角為
,則
顯然,二面角的平面角為銳角,
故二面角的平面角大小為
(Ⅲ)取平面的法向量取為
,則點A到平面
的距離
∵,∴
科目:高中數學 來源: 題型:
(07年四川卷理)(12分)如圖,是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面⊥平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
(07年四川卷理)(12分)如圖,是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面⊥平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分12分,第Ⅰ小題4分,第Ⅱ小題5分,第Ⅲ小題3分)
如圖,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面⊥平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年青海省片區高三年級大聯考理科數學試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,是直角梯形,
又
,
,直線
與直線
所成的角為
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求二面角的大;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com