精英家教網 > 高中數學 > 題目詳情

【題目】網絡購物已經被大多數人接受,隨著時間的推移,網絡購物的人越來越多,然而也有部分人對網絡購物的質量和信譽產生懷疑。對此,某新聞媒體進行了調查,在所有參與調查的人中,持“支持”和“不支持”態度的人數如下表所示:

年齡 態度

支持

不支持

20歲以上50歲以下

800

200

50歲以 (含50歲)

100

300

(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“支持”態度的人中抽取了9人,求的值;

(2)是否有99.9%的把握認為支持網絡購物與年齡有關?

參考數據:

,其中,

0.05

0.010

0.001

3.841

6.635

10.828

【答案】(1)(2)有99.9%的把握認為是否支持網絡購物與年齡有關

【解析】試題分析:(1)由題意,得,所以;(2)填寫好列聯表后,計算,所以有的把握認為是否支持網絡購物與年齡有關.

試題解析:

1)由題意,得

所以

2)根據題意得列聯表如下,

年齡 態度

支持

不支持

合計

20歲以上50歲以下

800

200

1000

50歲以上(含50歲)

100

300

400

合計

900

500

1400

所以

所以有99.9%的把握認為是否支持網絡購物與年齡有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為,采用系統抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區,從在第一營區,從在第二營區,從在第三營區,則第一、第二、第三營區被抽中的人數分別為(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數yf(x)對于任意的x都滿足f(x+1)=-f(x),當-1x<1f(x)=x3,若函數g(x)=f(x)-loga|x|至少有6個零點,a的取值范圍是(  )

A. (5) B.

C. (5,7) D. [57)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為的扇形廣場內(如圖所示),沿邊界修建觀光道路,其中分別在線段上,且兩點間距離為定長.

1)當時,求觀光道段的長度;

2)為提高觀光效果,應盡量增加觀光道路總長度,試確定圖中兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為(

A.0.59 B.0.54 C.0.8 D.0.15

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次籃球定點投籃訓練中,規定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學在處的抽中率,在處的抽中率為,該同學選擇現在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學投籃訓練結束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機變量的數學期望;

3試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.

(1)已知中間三個年齡段的網上購票人數成等差數列,求的值;

(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:

年齡在歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環數如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環數的平均數和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是如圖所示,坐標以已知條件為準,表示青蛙從點到點所經過的路程

1若點為拋物線準線上一點,點均在該拋物線上,并且直線經過該拋物線的焦點,證明

2若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出不需證明;

3若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達式

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视