【題目】已知是橢圓
的左、右焦點,
為坐標原點,點
在橢圓上,線段
與
軸的交點
滿足
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點
、
,當
,且滿足
時,求
的面積
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,底面
為正三角形,
底面
,且
,
是
的中點.
(1)求證: 平面
;
(2)求證:平面平面
;
(3)在側棱上是否存在一點
,使得三棱錐
的體積是
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線的焦點
,斜率為
的直線交拋物線于
兩點,且
.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大;
(Ⅱ)求sinB+sinC的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差大于零的等差數列{an}的前n項和為Sn , 且滿足a3a4=117,a2+a5=22.
(1)求通項an;
(2)若數列{bn}滿足bn= ,是否存在非零實數c使得{bn}為等差數列?若存在,求出c的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一條生產線上按同樣的方式每隔30分鐘取一件產品,共取了n件,測得其產品尺寸后,畫得其頻率分布直方圖如圖所示,已知尺寸在[15,45)內的頻數為46.
(1)該抽樣方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)內的產品的件數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),
為
上一點,以
為邊作等邊三角形
,且
、
、
三點按逆時針方向排列.
(Ⅰ)當點在
上運動時,求點
運動軌跡的直角坐標方程;
(Ⅱ)若曲線:
,經過伸縮變換
得到曲線
,試判斷點
的軌跡與曲線
是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com