【題目】已知函數f(x)sin
cos
(ω>0),如果存在實數x0,使得對任意的實數x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,則ω的最大值為( )
A.2020B.4040C.1010D.
【答案】A
【解析】
利用輔助角公式對函數化簡可得f(x)sin
cos
2sin(
),由對任意的實數x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立可得,兩端點值分別為函數的最小值和最大值,要使得ω 最大,只要周期
最大,當
2020,周期最大,代入即可求得解.
利用輔助角公式對函數化解可得f (x)sin
cos
2sin(
),
由對任意的實數x,對任意的實數x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立;
可得f(x0),f(x0-2020),分別為函數的最大值和最小值,
要使得ω最大,只要周期最大,
當2020即T=4040=2ω時,周期最大,此時ω=2020.
故選:A.
科目:高中數學 來源: 題型:
【題目】北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環繞天心石砌9塊扇面形石板構成第一環,向外每環依次增加9塊,下一層的第一環比上一層的最后一環多9塊,向外每環依次也增加9塊,已知每層環數相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)( )
A.3699塊B.3474塊C.3402塊D.3339塊
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正邊長為3,點M,N分別是AB,AC邊上的點,
,如圖1所示.將
沿MN折起到
的位置,使線段PC長為
連接PB,如圖2所示.
(1)求證:平面平面BCNM;
(2)若點D在線段BC上,且,求平面PDM和平面PDC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面四邊形ABCD是一個菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是線段PC上的任意一點,證明:平面PAC⊥平面QBD.
(2)當平面PBC與平面PDC所成的銳二面角的余弦值為時,求PA的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學生在寒假結束之后無法返校,教育部就此提出了線上教學和遠程教學,停課不停學的要求也得到了家長們的贊同.各地學校開展各式各樣的線上教學,某地學校為了加強學生愛國教育,擬開設國學課,為了了解學生喜歡國學是否與性別有關,該學校對100名學生進行了問卷調查,得到如下列聯表:
喜歡國學 | 不喜歡國學 | 合計 | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計 | 100 |
(1)請將上述列聯表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系?
(2)針對問卷調查的100名學生,學校決定從喜歡國學的人中按分層抽樣的方法隨機抽取6人成立國學宣傳組,并在這6人中任選2人作為宣傳組的組長,求選出的兩人均為女生的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com