精英家教網 > 高中數學 > 題目詳情

【題目】某球星在三分球大賽中命中率為 ,假設三分球大賽中總計投出8球,投中一球得3分,投丟一球扣一分,則該球星得分的期望與方差分別為(
A.16,32
B.8,32
C.8,8
D.32,32

【答案】B
【解析】解:根據題意,隨機變量X~B(8, ),

且P(X=k)= = = ,其中k=0,1,2,…,8;

∴EX=8× =4,DX=8× ×(1﹣ )=2;

球星得分為隨機變量Y,則Y的可能取值為﹣8,﹣4,0,4,8,12,16,20,24;

且P(Y=﹣8)=P(X=0)=

P(Y=﹣4)=P(X=1)= ,

P(Y=0)=P(X=2)=

P(Y=4)=P(X=3)= ,

P(Y=8)=P(X=4)= ,

P(Y=12)=P(X=5)= ,

P(Y=16)=P(X=6)= ,

P(Y=20)=P(X=7)= ,

P(Y=24)=P(X=8)= ;

∴隨機變量X、Y的關系為:Y=4X﹣8,

∴EY=E(4X﹣8)=4EX﹣8=4×4﹣8=8;

DY=D(4X﹣8)=16DX=16×2=32.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數方程 (φ為參數),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線l的極坐標方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax﹣lnx﹣a(a∈R).
(1)討論函數f(x)的單調性;
(2)若a∈(0,+∞),x∈(1,+∞),證明:f(x)<axlnx.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=x2﹣2|x|

1)將函數fx)寫成分段函數;

2)判斷函數的奇偶性,并畫出函數圖象.

3)若函數在[a, +∞)上單調,求a的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若,判斷函數的奇偶性,并加以證明;

(2)若函數上是增函數,求實數的取值范圍;

(3)若存在實數使得關于的方程有三個不相等的實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱上的有界函數,其中稱為函數的一個上界.已知函數, .

(1)若函數為奇函數,求實數的值;

(2)在(1)的條件下,求函數在區間上的所有上界構成的集合;

(3)若函數上是以3為上界的有界函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展開式中,把D ,D ,D …,D …,D 叫做三項式系數
(1)求D 的值
(2)根據二項式定理,將等式(1+x)2n=(1+x)n(x+1)n的兩邊分別展開可得,左右兩邊xn的系數相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,請計算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视