精英家教網 > 高中數學 > 題目詳情

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.

1)根據頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數據顯示,xy之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為.

【答案】12;(25;(3)得空白欄為5,.

【解析】

1)根據在頻率直方圖所有小矩形的面積之和為1直接求解即可;

2)根據已知所給的各組取值的方法進行求解即可;

3)直接將(2)的結果填入上表的空白欄.根據平均數的計算公式求出的值,再求出,最后根據所給的公式求出,的值,最后求出回歸直線方程.

1)設各小長方形的寬度為m,可得:

.

2)可得各組中點從左向右依次是1,3,579,11

各組中點對應的頻率從左向右依次是0.16,0.200.28,0.24,0.08,0.04

平均值.

3)得空白欄為5,

,

,,

根據公式可得,

故回歸直線方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某超市從現有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數據(數據均在區間內)中,按照的比例進行分層抽樣,統計結果按,,,分組,整理如下圖:

1)求頻率分布直方圖(圖乙)中的值,并估計1200個日銷售量中,數據在區間中的個數.

2)從日銷售量在的甲種酸奶的數據樣本中抽取3個,記在內的數據個數為,求的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四色猜想是世界三大數學猜想之一,1976年數學家阿佩爾與哈肯證明,稱為四色定理.其內容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數學語言表示為將平面任意地細分為不相重疊的區域,每一個區域總可以用12,3,4四個數字之一標記,而不會使相鄰的兩個區域得到相同的數字.”如圖,網格紙上小正方形的邊長為1,粗實線圍城的各區域上分別標有數字1,234的四色地圖符合四色定理,區域和區域標記的數字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為1的區域的概率所有可能值中,最大的是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數同時在處取得極小值,則稱為一對“函數”.

(1)試判斷是否是一對“函數”;

(2)若是一對“函數”.

①求的值;

②當時,若對于任意,恒有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為實常數.

(1)若當時,在區間上的最大值為,求的值;

(2)對任意不同兩點,,設直線的斜率為,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正四棱錐的底面邊長和高都為2.現從該棱錐的5個頂點中隨機選取3個點構成三角形,設隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機變量的概率分布及其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓的參數方程為為參數),以為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求的極坐標方程和直線的直角坐標方程;

(2)射線與圓的交點為,,與直線的交點為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前n項和為,且滿足,數列中,,對任意正整數.

1)求數列的通項公式;

2)是否存在實數,使得數列是等比數列?若存在,請求出實數及公比q的值,若不存在,請說明理由;

3)求數列n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點都在球的球面上,則球0的表面積為( )

A. 8πB. 12πC. 20πD. 24π

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视