【題目】已知函數.
⑴判斷的奇偶性.
⑵寫出的單調區間(只需寫出結果).
⑶若方程有解,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(1)解不等式2x2+(2-a)x-a>0;
(2)b為何值時,ax2+bx+3≥0的解集為R.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域是{x|x≠0},對定義域內的任意,
都有f(
·
)=f(
)+f(
),且當x>1時,f(x)>0,f(2)=1.
(1)證明:(x)是偶函數;
(2)證明:(x)在(0,+∞)上是增函數;
(3)解不等式(2
-1)<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,F是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.
(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值:
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;則a=____,b=_______
(2)直線l1與直線l2平行,并且直線l2在y軸上的截距為3.則a=____,b=_______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種子培育基地新研發了兩種型號的種子,從中選出90粒進行發芽試驗,并根據結果對種子進行改良.將試驗結果匯總整理繪制成如下
列聯表:
(1)將列聯表補充完整,并判斷是否有99%的把握認為發芽和種子型號有關;
(2)若按照分層抽樣的方式,從不發芽的種子中任意抽取20粒作為研究小樣本,并從這20粒研究小樣本中任意取出3粒種子,設取出的型號的種子數為
,求
的分布列與期望.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 處的切線與直線4x+y=0平行,求a的值;
(2)討論函數f(x)的單調區間;
(3)若函數y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為x0 , 證明f′(x0)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某闖關游戲規則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數分別記為xn , yn , 如果點數滿足xn< ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數為隨機變量X,求x的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com