【題目】已知函數.
(1)若曲線在點
處的切線方程是
,求函數
在
上的值域;
(2)當時,記函數
,若函數
有三個零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】隨著城市地鐵建設的持續推進,市民的出行也越來越便利.根據大數據統計,某條地鐵線路運行時,發車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數p(t)(單位:人)與發車時間間隔t近似地滿足下列函數關系:
,其中
.
(1)若平均每趟地鐵的載客人數不超過1500人,試求發車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】東方商店欲購進某種食品(保質期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產的).根據市場調查,該食品每份進價元,售價
元,如果兩天內無法售出,則食品過期作廢,且兩天內的銷售情況互不影響,為了了解市場的需求情況,現統計該產品在本地區
天的銷售量如下表:
(視樣本頻率為概率)
(1)根據該產品天的銷售量統計表,記兩天中一共銷售該食品份數為
,求
的分布列與期望
(2)以兩天內該產品所獲得的利潤期望為決策依據,東方商店一次性購進或
份,哪一種得到的利潤更大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右頂點分別為
,
,上下頂點分別為
,
,左、右焦點分別為
,
,離心率為e.
(1)若,設四邊形
的面積為
,四邊形
的面積為
,且
,求橢圓C的方程;
(2)若,設直線
與橢圓C相交于P,Q兩點,
分別為線段
,
的中點,坐標原點O在以MN為直徑的圓上,且
,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),以直角坐標系的原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)設曲線的極坐標方程為
,曲線
的極坐標方程為
,求三條曲線
,
,
所圍成圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為a的正方體ABCD-A1B1C1D1中,E是棱DD1的中點:
(1)求點D到平面A1BE的距離;
(2)在棱上是否存在一點F,使得B1F∥平面A1BE,若存在,指明點F的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】折紙與數學有著千絲萬縷的聯系,吸引了人們的廣泛興趣.因紙的長寬比
稱為白銀分割比例,故
紙有一個白銀矩形的美稱.現有一張如圖1所示的
紙
,
.
分別為
的中點,將其按折痕
折起(如圖2),使得
四點重合,重合后的點記為
,折得到一個如圖3所示的三棱錐
.記
為
的中點,在
中,
為
邊上的高.
(1)求證:平面
;
(2)若分別是棱
上的動點,且
.當三棱錐
的體積最大時,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線C:y2=4x的焦點為F,過F的直線l與C交于A,B兩點,點M的坐標為(﹣1,0).
(1)當l與x軸垂直時,求△ABM的外接圓方程;
(2)記△AMF的面積為S1,△BMF的面積為S2,當S1=4S2時,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com