精英家教網 > 高中數學 > 題目詳情

已知函數,.
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若對恒成立,求實數的取值范圍;
(3)設,在(1)的條件下,證明當時,對任意兩個不相等的正數、,有.

(1);(2);(3)詳見解析.

解析試題分析:(1)先求導,利用題中條件得到,從而求出實數的值;(2)解法一是構造新函數,問題轉化為來處理,求出導數的根,對與區間的相對位置進行分類討論,以確定函數的單調性與最值,從而解決題中的問題;解法二是利用參數分離法將問題轉化為,從而將問題轉化為來處理,而將視為點與點連線的斜率,然后利用圖象確定斜率的最小值,從而求解相應問題;(3)證法一是利用基本不等式證明,再將三個同向不等式相加即可得到問題的證明;證法二是利用作差法結合基本不等式得到進而得到問題的證明.
試題解析:(1),由曲線在點處的切線平行于軸得
,;
(2)解法一:當時,,函數上是增函數,有,------6分
時,函數上遞增,在上遞減,
,恒成立,只需,即;
時,函數上遞減,對,恒成立,只需,
,不合題意,
綜上得對,恒成立,;
解法二:由可得,

由于表示兩點、的連線斜率,
由圖象可知單調遞減,
故當,,
,即;
(3)證法一:由


,
,①

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)試判斷函數的單調性;
(2)設,求上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


已知的導函數,,且函數的圖象過點.
(1)求函數的表達式;
(2)求函數的單調區間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是自然對數的底數,函數.
(1)求函數的單調遞增區間;
(2)當時,函數的極大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)當時,求函數的圖象在點處的切線方程;
(2)如果對于任意、,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現將此矩形材料卷成一個以為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),設與矩形材料的邊的夾角為,圓柱的體積為.

(1)求關于的函數關系式?
(2)求圓柱形罐子體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,
(1)求函數的單調區間;
(2)若當時,不等式恒成立,求實數的取值范圍;   
(3)若關于的方程在區間上恰好有兩個相異的實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若函數在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(2)當a=1時,求函數在區間[t,t+3]上的最大值.

查看答案和解析>>
久久精品免费一区二区视