【題目】已知方程.
(1)求該方程表示一條直線的條件;
(2)當為何實數時,方程表示的直線斜率不存在?求出這時的直線方程;
(3)已知方程表示的直線在
軸上的截距為-3,求實數
的值;
(4)若方程表示的直線的傾斜角是45°,求實數
的值.
科目:高中數學 來源: 題型:
【題目】某企業共有20條生產線,由于受生產能力和技術水平等因素的影響,會產生一定量的次品.根據經驗知道,每臺機器產生的次品數萬件與每臺機器的日產量
萬件
之間滿足關系:
.已知每生產1萬件合格的產品可以以盈利3萬元,但每生產1萬件次品將虧損1萬元.
(Ⅰ)試將該企業每天生產這種產品所獲得的利潤表示為
的函數;
(Ⅱ)當每臺機器的日產量為多少時,該企業的利潤最大,最大為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次籃球定點投籃訓練中,規定每人最多投3次.在處每投進一球得3分;在
處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次. 某同學在
處的投中率
,在
處的投中率為
.該同學選擇先在
處投一球,以后都在
處投,且每次投籃都互不影響.用
表示
該同學投籃訓練結束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機變量的數學期望
;
(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為增強市民的環境保護意識, 面向全市征召義務宣傳志愿者,現從符合條件的志愿者中隨機抽取名按年齡分組: 第
組
,第2 組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示,
(1)若從第組中用分層抽樣的方法抽取
名志愿者參與廣場的宣傳活動, 應從第
組各抽取多少名志愿者?
(2)在(1)的條件下, 該縣決定在這名志愿者中隨機抽取
名志愿者介紹宣傳經驗, 求第
組至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象上有一點列
,點
在
軸上的射影是
,且
(
且
),
.
(1)求證: 是等比數列,并求出數列
的通項公式;
(2)對任意的正整數,當
時,不等式
恒成立,求實數
的取值范圍.
(3)設四邊形的面積是
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側棱PC⊥底面ABCD,且PC=2,E是側棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com