【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令
,下面說法錯誤的是( )
A.若 與
共線,則
⊙
=0
B. ⊙
=
⊙
C.對任意的λ∈R,有 ⊙
=
⊙
)
D.( ⊙
)2+(
)2=|
|2|
|2
【答案】B
【解析】解:對于A,若 與
共線,則有
,故A正確; 對于B,因為
,而
,所以有
,故選項B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
故選B.
根據題意對選項逐一分析.若 與
共線,則有
,故A正確;
因為 ,而
,所以有
,故選項B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
得到答案.
科目:高中數學 來源: 題型:
【題目】正三棱臺的上、下底面的邊長分別是3和6.
(1)若側面與底面所成的角為60°,求此三棱臺的體積;
(2)若側棱與底面所成的角為60°,求此三棱臺的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數f(x)的單調遞增區間;
(2)將函數y=f(x)的圖象向左平移 個單位后,再將圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的最大值及取得最大值時的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為
上任意一點,求
的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是y1 , y2萬元,它們與投入資金x萬元的關系分別為y1=m +a,y2=bx,(其中m,a,b都為常數),函數y1 , y2對應的曲線C1 , C2如圖所示.
(1)求函數y1與y2的解析式;
(2)若該商場一共投資10萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com