精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=|x|+|x﹣3|.
(1)解關于x的不等式f(x)﹣5≥x;
(2)設m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。

【答案】
(1)解:

,解之得 或x∈或x≥8,

所以不等式的解集為


(2)解:由(1)易知f(x)≥3,所以m≥3,n≥3

由于2(m+n)﹣(mn+4)=2m﹣mn+2n﹣4=(m﹣2)(2﹣n)

且m≥3,n≥3,所以m﹣2>0,2﹣n<0,即(m﹣2)(2﹣n)<0,

所以2(m+n)<mn+4


【解析】(1)分類討論,即可解關于x的不等式f(x)﹣5≥x;(2)由(1)易知f(x)≥3,所以m≥3,n≥3,利用作差法,即可比較mn+4與2(m+n)的大。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+ |+|x﹣a|(a>0) (Ⅰ)證明:f(x)≥2
(Ⅱ)當a=1時,求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x﹣2)ex+ax(a∈R)
(1)試確定函數f(x)的零點個數;
(2)設x1 , x2是函數f(x)的兩個零點,當x1+x2≤2時,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的參數方程為 ,以直角坐標系原點為極點, 軸正半軸為極軸建立極坐標系。
(1)求曲線C的極坐標方程;
(2)若直線 的極坐標方程為 ,求直線 被曲線C截得的弦長。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中n=a+b+c+d)
(1)請將上述列聯表補充完整:并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(2)針對于問卷調查的100名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設這兩人中男生人數為X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為 ,兩焦點之間的距離為4.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作直線交拋物線y2=4x于A,B兩點,求證:OA⊥OB(O為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1﹣an}是等差數列;
(2)求數列{ }的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE=30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足
(1)若設計AB=18米,AD=6米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設計AB與AD的長度,可使得活動中心的截面面積最大?(注:計算中π取3)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视