精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.
(Ⅰ)當a=1時,求函數f(x)在區間[1,e]上的最大值;
(Ⅱ)若數學公式恒成立,求a的取值范圍;
(Ⅲ)對任意x1∈[1,+∞),總存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范圍.

解:(Ⅰ)當a=1,x∈[1,e]時f(x)=x2-lnx+1,,
所以f(x)在[1,e]遞增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①當x≥e時,f(x)=x2+alnx-a,f'(x)=2x+,a>0,∴f(x)>0恒成立,
∴f(x)在[e,+∞)上增函數,故當x=e時,ymin=f(e)=e2(5分)
②當1≤x<e時,f(x)=x2-alnx+a,f'(x)=2x-=(x+)(x-),
(i)當≤1即0<a≤2時,f'(x)在x∈(1,e)時為正數,所以f(x)在區間[1,e)上為增函數,
故當x=1時,ymin=1+a,且此時f(1)<f(e)=e2(7分)
(ii)當1<<e,即2<a<2e2時,f'(x)在x∈(1,)時為負數,在間x∈(,e)時為正數,
所以f(x)在區間[1,)上為減函數,在(,e]上為增函數,故當x=時,ymin=-ln,
且此時f()<f(e)=e2(8分)
(iii)當≥e,即a≥2e2時,f'(x)在x∈(1,e)時為負數,所以f(x)在區間[1,e]上為減函數,
故當x=e時,ymin=f(e)=e2(9分)
綜上所述,函數y=f(x)的最小值為ymin=(10分)
所以當時,得0<a≤2;當(2<a<2e2)時,無解;
(a≥2e2)時,得不成立.
綜上,所求a的取值范圍是0<a≤2(11分)
(Ⅲ)①當0<a≤2時,g(x)在[2,+∞)單調遞增,由g(2)=6-2a-2ln2≤1+a,
(12分)
②當時,g(x)在[2,+∞)先減后增,由
,設,h'(t)=2+lnt>0(1<t<2),
所以h(t)單調遞增且h(2)=0,所以h(t)<0恒成立得2<a<4(14分)
③當時,f(x)在遞增,在遞減,
在[a,+∞)遞增,所以由,
,設m(t)=t2-3t+tlnt+2-2ln2,
則m'(t)=2t-2+lnt>0(t∈(2,e2),所以m(t)遞增,且m(2)=0,
所以m(t)>0恒成立,無解.
④當a>2e2時,f(x)在遞增,在遞減,在[a,+∞)遞增,
所以由<e得無解.
綜上,所求a的取值范圍是
分析:(Ⅰ)當a=1,x∈[1,e]化簡f(x),然后研究函數f(x)在[1,e]的單調性,從而求出函數f(x)的最大值;
(Ⅱ)討論x與e的大小去掉絕對值,然后分類討論討論導數符號研究函數在[1,+∞)的單調性,從而求出函數f(x)的最小值,使f(x)的最小值恒大于等于,求出a的取值范圍;
(Ⅲ)根據(II)的分類討論求出函數g(x)的最小值,使g(x)的最小值恒小于等于f(x)的最小值,從而求出a的取值范圍.
點評:本題主要考查了函數的最值及其幾何意義,以及分類討論的思想,解題的關鍵是對于恒成立的理解,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视