【題目】現有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為
,每命中一次得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(1)求該射手恰好命中一次得的概率;
(2)求該射手的總得分X的分布列及數學期望EX.
【答案】
(1)解:記:“該射手恰好命中一次”為事件A,“該射手射擊甲靶命中”為事件B,“該射手第一次射擊乙靶命中”為事件C,“該射手第二次射擊乙靶命中”為事件D
由題意知P(B)= ,P(C)=P(D)=
由于A=B +
+
根據事件的獨立性和互斥性得
P(A)=P(B )+P(
)+P(
)=P(B)P(
)P(
)+P(
)P(C)P(
)+P(
)P(
)P(D)
= ×(1﹣
)×(1﹣
)+(1﹣
)×
×(1﹣
)+(1﹣
)×(1﹣
)×
=
(2)解:根據題意,X的所有可能取值為0,1,2,3,4,5
根據事件的對立性和互斥性得
P(X=0)=P( )=(1﹣
)×(1﹣
)×(1﹣
)=
P(X=1)=P(B )=
×(1﹣
)×(1﹣
)=
P(X=2)=P( +
)=P(
)+P(
)=(1﹣
)×
×(1﹣
)+(1﹣
)×(1﹣
)×
=
P(X=3)=P(BC )+P(B
D)=
×
×(1﹣
)+
×(1﹣
)×
=
P(X=4)=P( )=(1﹣
)×
×
=
P(X=5)=P(BCD)= ×
×
=
故X的分布列為
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
所以E(X)=0× +1×
+2×
+3×
+4×
+5×
=
【解析】(1)記:“該射手恰好命中一次”為事件A,“該射手射擊甲靶命中”為事件B,“該射手第一次射擊乙靶命中”為事件C,“該射手第二次射擊乙靶命中”為事件D,由于A=B +
+
,根據事件的獨立性和互斥性可求出所求;(2)根據題意,X的所有可能取值為0,1,2,3,4,根據事件的對立性和互斥性可得相應的概率,得到分布列,最后利用數學期望公式解之即可.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知雙曲線C1:2x2﹣y2=1.
(1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設斜率為1的直線l交C1于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動點,且OM⊥ON,求證:O到直線MN的距離是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的兩個頂點分別為
和
,兩個焦點分別為
和
(
),過點
的直線
與橢圓相交于另一點
,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設直線上有一點
(
)在
的外接圓上,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sinx,1),
=(
Acosx,
cos2x)(A>0),函數f(x)=
的最大值為6.
(1)求A;
(2)將函數y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標縮短為原來的
倍,縱坐標不變,得到函數y=g(x)的圖象.求g(x)在[0,
]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出
的值為 ( )
(參考數據: )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設p:實數x滿足x2-5ax+4a2<0(其中a>0),q:實數x滿足2<x≤5.
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若q是
p的必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點,PE=2EC.
(1)證明:PC⊥平面BED;
(2)設二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com