精英家教網 > 高中數學 > 題目詳情

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯合制作的《開講啦》是中國首檔青春電視公開課。每期節目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現實的討論和心靈的滋養,討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節目的喜愛程度,電視臺隨機調查了兩個地區的100名觀眾,得到如下的列聯表

非常滿意

滿意

合計

30

合計

已知在被調查的100名觀眾中隨機抽取1名,該觀眾是地區當中“非常滿意”的觀眾的概率為,.

(Ⅰ)現從100名觀眾中用分層抽樣的方法抽取20名進行問卷調查,則應抽取“滿意”的、地區的人數各是多少

(Ⅱ)完成上述表格,并根據表格判斷是否有的把握認為觀眾的滿意程度與所在地區有關系

(Ⅲ)若以抽樣調查的頻率為概率,從地區隨機抽取3人,設抽到的觀眾“非常滿意”的人數為的分布列和期望.

附:參考公式:

【答案】(1)3;4.

(2)列聯表見解析;沒有的把握認為觀眾的滿意程度與所在地區有關系.

(3)分布列見解析;.

【解析】分析:(1)先根據概率計算x的值,得出y+z=35,再計算yz的值,根據比例得出應抽取“滿意”的A、B地區的人數;
(2)根據獨立性檢驗公式計算觀測值k2,從而得出結論;
(3)根據二項分布的概率公式計算分布列和數學期望.

詳解:

(Ⅰ)由題意,得,所以,所以,

因為,所以,,地抽取,地抽取.

(Ⅱ)

非常滿意

滿意

合計

30

15

45

35

20

55

合計

65

35

100

的觀察值

所以沒有的把握認為觀眾的滿意程度與所在地區有關系.

(Ⅲ)從地區隨機抽取1人,抽到的觀眾“非常滿意”的概率為

隨機抽取3人,的可能取值為0,1,2,3

,

的分布列

0

1

2

3

的數學期望:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司為招聘新員工設計了一個面試方案:應聘者從道備選題中一次性隨機抽取道題,按照題目要求獨立完成規定:至少正確完成其中道題的便可通過.已知道備選題中應聘者甲有道題能正確完成,道題不能完成;應聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響

1)分別求甲、乙兩人正確完成面試題數的分布列,并計算其數學期望;

2)請分析比較甲、乙兩人誰的面試通過的可能性大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C+=1ab0)的離心率為,短軸一個端點到右焦點的距離為3

1)求橢圓C的方程;

2)橢圓C上是否存在點P,使得過點P引圓Ox2+y2=b2的兩條切線PA、PB互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點沿AD折到位置如圖,連結PC,PB構成一個四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為拋物線的焦點,為其標準線與軸的交點,過的直線交拋物線,兩點,為線段的中點,且,則__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應填入的語句為(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業一天中不同時刻的用電量(萬千瓦時)關于時間(單位:小時,其中對應凌晨0點)的函數近似滿足 ,如圖是函數的部分圖象.

(1)求的解析式;

(2)已知該企業某天前半日能分配到的供電量(萬千瓦時)與時間(小時)的關系可用線性函數模型模擬,當供電量小于企業用電量時,企業必須停產.初步預計開始停產的臨界時間在中午11點到12點之間,用二分法估算所在的一個區間(區間長度精確到15分鐘).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的三角形ABC中,一機器人從三角形ABC上的每一個頂點移動到另一個頂點,(規定:每次只能從一個頂點移動到另一個頂點),而且按逆時針方向移動的概率為順時針方向移動的概率的3,假設現在機器人的初始位置為頂點A處,則通過三次移動后返回到A處的概率為________________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是中國古代的數學專著,其中的“更相減損術”可以用來求兩個數的最大公約數,原文是:可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也,以等數約之. 翻譯為現代的語言如下:如果需要對分數進行約分,那么可以折半的話,就折半(也就是用2來約分).如果不可以折半的話,那么就比較分母和分子的大小,用大數減去小數,互相減來減去,一直到減數與差相等為止,用這個相等的數字來約分,現給出“更相減損術”的程序框圖如圖所示,如果輸入的,,則輸出的( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视