【題目】已知函數f(x)=lg(1﹣x)的定義域為M,函數 的定義域為N,則M∩N=( )
A.{x|x<1且x≠0}
B.{x|x≤1且x≠0}
C.{x|x>1}
D.{x|x≤1}
【答案】A
【解析】解:∵1﹣x>0,得x<1,∴函數f(x)=lg(1﹣x)的定義域M={x|x<1}.
∵x≠0時,函數 有意義,∴函數
的定義域N={x|x≠0}.
∴M∩N={x|x<1}∩{x|x≠0}={x|x<1,且x≠0}.
故選A.
【考點精析】關于本題考查的集合的交集運算和函數的定義域及其求法,需要了解交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立;求函數的定義域時,一般遵循以下原則:①
是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2+(b﹣8)x﹣a﹣ab的兩個零點分別是﹣3和2.
(Ⅰ)求f(x);
(Ⅱ)當函數f(x)的定義域是[0,1]時,求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班20名同學某次數學測試的成績可繪制成如圖莖葉圖.由于其中部分數據缺失,故打算根據莖葉圖中的數據估計全班同學的平均成績.
(1)完成頻率分布直方圖;
(2)根據(1)中的頻率分布直方圖估計全班同學的平均成績(同一組中的數據用改組區間的中點值作代表);
(3)根據莖葉圖計算出的全班的平均成績為,并假設
,且
取得每一個可能值的機會相等,在(2)的條件下,求概率
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合S={A0 , A1 , A2 , A3},在S上定義運算⊕:Ai⊕Aj=Ak , 其中k為i+j被4除的余數,i,j=0,1,2,3,則使關系式(Ai⊕Ai)⊕Aj=A0成立的有序數對(i,j)的組數為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數g(x)=log2 (x>0),關于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數解,則實數m的取值范圍為( )
A.(﹣∞,4﹣2 )∪(4
,+∞)
B.(4﹣2 ,4
)
C.(﹣ ,﹣
)
D.(﹣ ,﹣
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校舉行的一次數學競賽中,全體參賽學生的競賽成績X近似服從正態分布N(70,100).已知成績在90分以上(含90分)的學生有16名.
(1)試問此次參賽的學生總數約為多少人?
(2)若該校計劃獎勵競賽成績在80分以上(含80分)的學生,試問此次競賽獲獎勵的學生約為多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com