精英家教網 > 高中數學 > 題目詳情
(2013•牡丹江一模)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=2
3
,AE=6
,求EC的長.
分析:(Ⅰ)要證明AC是△BDE的外接圓的切線,故考慮取BD的中點O,只要證明OE⊥AC,結合∠C=90°,證明BC∥OE即可
(Ⅱ)設⊙O的半徑為r,則在△AOE中,由OA2=OE2+AE2,可求r,代入可得OA,2OE,Rt△AOE中,可求∠A,∠AOE,進而可求∠CBE=∠OBE,在BCE中,通過EC與BE的關系可求
解答:證明:(Ⅰ)取BD的中點O,連接OE.
∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,
∴∠CBE=∠BEO,∴BC∥OE.…(3分)
∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.    …(5分)
(Ⅱ)設⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+2
3
)2=r2+62
,
解得r=2
3
,…(7分)
∴OA=2OE,
∴∠A=30°,∠AOE=60°.
∴∠CBE=∠OBE=30°.
∴在Rt△BCE中,可得EC=
1
2
BE=
1
2
×
3
r=
1
2
×
3
×2
3
=3
.                 …(10分)
點評:本題主要考查了切線的判定定理的應用,直角三角形基本關系的應用,屬于基本知識的簡單綜合.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•牡丹江一模)在球O內任取一點P,使得P點在球O的內接正方體中的概率是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•牡丹江一模)復數 (1+i)z=i( i為虛數單位),則
.
z
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•牡丹江一模)已知函數f(x)=
1+1nx
x

(1)若函數f(x)在區間(a,a+
1
3
)(a>0)
上存在極值點,求實數a的取值范圍;
(2)知果當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對數的底數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•牡丹江一模)已知函數f(x)=xlnx.
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅲ)設函數g(x)=f(x)-a(x-1),其中a∈R,求函數g(x)在區間[1,e]上的最小值.(其中e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•牡丹江一模)已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個側面中面積最大的是( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视