為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 5 | |
女生 | 10 | | |
合計 | | | 50 |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)
(2) 有99.5%的把握認為喜愛打籃球與性別有關;(3) 喜愛打籃球 不喜愛打籃球 合計 男生 20 5 25 女生 10 15 25 合計 30 20 50 和
不全被選中的概率
.
解析試題分析:(1)根據在全部50人中隨機抽取1人抽到喜愛打羽毛球的學生的概率,做出喜愛打羽毛球的人數,進而做出男生的人數,填好表格.(2)根據所給的公式,代入數據求出臨界值,把求得的結果同臨界值表進行比較,看出有多大的把握說明打羽毛球和性別有關系.(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,列舉出其一切可能的結果組成的基本事件,而用M表示“B1,C1不全被選中”這一事件,則其對立事件表示“B1,C1全被選中”這一事件,通過列舉得到對立事件
的事件數,求出概率,最后利用對立事件概率求解即可.
試題解析:(1)列聯表補充如下:
(2)∵ 喜愛打籃球 不喜愛打籃球 合計 男生 20 5 25 女生 10 15 25 合計 30 20 50
∴有99.5%的把握認為喜愛打籃球與性別有關.
(3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:,
,
,
,
,
,
,
,
基本事件的總數為18,用表示“
不全被選中”這一事件,則其對立事件
表示“
全被選中”這一事件,由于
由
, 3個基本事件組成,所以
由對立事件的概率公式得.
考點:獨立性檢驗的應用;等可能事件的概率.
科目:高中數學 來源: 題型:解答題
某市規定,高中學生三年在校期間參加不少于小時的社區服務才合格.教育部門在全市隨機抽取200位學生參加社區服務的數據,按時間段
,
,
,
,
(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區服務時間不少于90小時的學生人數,并估計
從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區服務時間不少于90小時的人數.試求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4,則該產品為一等品.先從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標(x,y,z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某化肥廠有甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產品,稱其重量(單位:kg),分別記錄抽查數據如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計算甲、乙車間產品重量的平均數與方差,并說明哪個車間產品較穩定?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據壽命將燈泡分成優等品、正品和次品三個等級,其中壽命大于或等于
天的燈泡是優等品,壽命小于
天的燈泡是次品,其余的燈泡是正品.
壽命(天) | 頻數 | 頻率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合計 | ![]() | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對某電子元件進行壽命追蹤調查,所得樣本數據的頻率分布直方圖如下.
(1)求,并根據圖中的數據,用分層抽樣的方法抽取
個元件,元件壽命落在
之間的應抽取幾個?
(2)從(1)中抽出的壽命落在之間的元件中任取
個元件,求事件“恰好有一個元件壽命落在
之間,一個元件壽命落在
之間”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了解某地區學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區選擇了3600人調查,就是否“取消英語聽力”的問題,調查統計的結果如下表:
| 應該取消 | 應該保留 | 無所謂 | ||
在校學生 | 2100人 | 120人 | y人 | ||
社會人士 | 600人 | x人 | z人 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
根據空氣質量指數API(為整數)的不同,可將空氣質量分級如下表:
API | 0~50 | 51~ 100 | 101~ 150 | 151~ 200 | 201~ 250 | 251~ 300 | >300 |
級 別 | Ⅰ | Ⅱ | Ⅲ1 | Ⅲ2 | Ⅳ1 | Ⅳ2 | Ⅴ |
狀 況 | 優 | 良 | 輕微 污染 | 輕度 污染 | 中度 污染 | 中度 重污染 | 重度 污染 |
| ![]() | ![]() | ![]() | ![]() | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們日平均增加的睡眠時間(單位:h),試驗的觀測結果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計算兩組數據的平均數,從計算結果看,哪種藥的療效更好?
(2)根據兩組數據完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com