【題目】已知直線:
與焦點為
的拋物線
:
相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點的直線
與拋物線
交于
,
兩點,求
,
兩點到直線
的距離之和的最小值.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
,圓
經過橢圓
的兩個焦點和兩個頂點,點
在橢圓
上,且
,
.
(Ⅰ)求橢圓的方程和點
的坐標;
(Ⅱ)過點的直線
與圓
相交于
、
兩點,過點
與
垂直的直線
與橢圓
相交于另一點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
,
,
,
是橢圓上任意三點,
,
關于原點對稱且滿足
.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:
相切,與橢圓
相交于不同的兩點
、
,求
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
,
.
(1)求證:對,直線
與圓
總有兩個不同的交點
;
(2)求弦的中點
的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數,使得原
上有四點到直線
的距離為
?若存在,求出
的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,定義函數
對于兩個集合
,定義集合
. 已知
,
.
(Ⅰ)寫出和
的值,并用列舉法寫出集合
;
(Ⅱ)用表示有限集合
所含元素的個數,求
的最小值;
(Ⅲ)有多少個集合對,滿足
,且
?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com