【題目】設函數,
.
(1)若曲線在點
處的切線與直線
垂直,求
的單調性和極小值(其中
為自然對數的底數);
(2)若對任意的,
恒成立,求
的取值范圍.
【答案】(1)單調遞減區間為,單調遞增區間為
,極小值為
;(2)
.
【解析】
(1)由題意可得,可求得
的值,利用導數可求得函數
的單調區間和極小值;
(2)由的
,構造函數
,可知函數
在區間
上單調遞減,可轉化為
對任意的
恒成立,由參變量分離法得出
對任意的
恒成立,求出二次函數
在
上的最大值,進而可得出實數
的取值范圍.
(1),
,
由于曲線在點
處的切線與直線
垂直,則
,可得
.
此時,,定義域為
,
,令
,得
.
列表如下:
極小值 |
所以,函數的單調遞減區間為
,單調遞增區間為
,
函數的極小值為
;
(2)由的
,
設,則
,
由于,所以,函數
在
上單調遞減,
,由題意可知
對任意的
恒成立,可得
,
對于二次函數,
當時,函數
取得最大值
,
.
因此,實數的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
,且
與短軸兩端點的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點
,
,橢圓
上存在兩個點
滿足:
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生考試中答對但得不了滿分的原因多為答題不規范,具體表現為:解題結果正確,無明顯推理錯誤,但語言不規范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”為評估此類解答導致的失分情況,某市教研室做了項試驗:從某次考試的數學試卷中隨機抽取若干屬于“
類解答”的題目,掃描后由近百名數學老師集體評閱,統計發現,滿分12分的題,閱卷老師所評分數及各分數所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數所占比例 |
某次數學考試試卷評閱采用“雙評+仲裁”的方式,規則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數和一、二評中與之接近的分數的平均分為該題得分;當一、二評分數和仲裁分數差值的絕對值相同時,取仲裁分數和前兩評中較高的分數的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分
的分布列及數學期望
;
(2)本次數學考試有6個解答題,每題滿分12分,同學乙6個題的解答均為“類解答”.
①記乙同學6個題得分為的題目個數為
計算事件
的概率.
②同學丙的前四題均為滿分,第5題為“類解答”,第6題得8分.以乙、丙兩位同學解答題總分均值為依據,談談你對“
類解答”的認識.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某購物商場分別推出支付寶和微信“掃碼支付”購物活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現統計了活動剛推出一周內每天使用掃碼支付的人次,用表示活動推出的天數,
表示每天使用掃碼支付的人次,統計數據如下表所示:
(1)根據散點圖判斷,在推廣期內,掃碼支付的人次關于活動推出天數
的回歸方程適合用
來表示,求出該回歸方程,并預測活動推出第
天使用掃碼支付的人次;
(2)推廣期結束后,商場對顧客的支付方式進行統計,結果如下表:
支付方式 | 現金 | 會員卡 | 掃碼 |
比例 |
商場規定:使用現金支付的顧客無優惠,使用會員卡支付的顧客享受折優惠,掃碼支付的顧客隨機優惠,根據統計結果得知,使用掃碼支付的顧客,享受
折優惠的概率為
,享受
折優惠的概率為
,享受
折優惠的概率為
.現有一名顧客購買了
元的商品,根據所給數據用事件發生的頻率來估計相應事件發生的概率,估計該顧客支付的平均費用是多少?
參考數據:設,
,
,
參考公式:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現從參加冬奧知識競賽活動的學生中隨機抽取了
名學生,將他們的比賽成績(滿分為
分)分為
組:
,
,
,
,
,
,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于
分”,估計
的概率;
(3)在抽取的名學生中,規定:比賽成績不低于
分為“優秀”,比賽成績低于
分為“非優秀”.請將下面的
列聯表補充完整,并判斷是否有
的把握認為“比賽成績是否優秀與性別有關”?
優秀 | 非優秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數據:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校同時提供、
兩類線上選修課程,
類選修課每次觀看線上直播
分鐘,并完成課后作業
分鐘,可獲得積分
分;
類選修課每次觀看線上直播
分鐘,并完成課后作業
分鐘,可獲得積分
分.每周開設
次,共開設
周,每次均為獨立內容,每次只能選擇
類、
類課程中的一類學習.當選擇
類課程
次,
類課程
次時,可獲得總積分共_______分.如果規定學生觀看直播總時間不得少于
分鐘,課后作業總時間不得少于
分鐘,則通過線上選修課的學習,最多可以獲得總積分共________分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
過點
,傾斜角為
.以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程
.
(1)寫出直線的參數方程及曲線
的直角坐標方程;
(2)若與
相交于
,
兩點,
為線段
的中點,且
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年是打贏藍天保衛戰三年行動計劃的決勝之年,近年來,在各地各部門共同努力下,藍天保衛戰各項任務措施穩步推進,取得了積極成效,某學生隨機收集了甲城市近兩年上半年中各
天的空氣量指數
,得到頻數分布表如下:
年上半年中
天的
頻數分布表
| |||||
天數 |
年上半年中
天的
頻數分布表
| |||||
天數 |
(1)估計年上半年甲城市空氣質量優良天數的比例;
(2)求年上半年甲城市
的平均數和標準差的估計值(同一組中的數據用該組區間的中點值為代表);(精確到
)
(3)用所學的統計知識,比較年上半年與
年上半年甲城市的空氣質量情況.
附:
| ||||||
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com