【題目】已知直線l經過點(1,﹣2),且與直線m:4x﹣3y+1=0平行;
(1)求直線l的方程;
(2)求直線l被圓x2+y2=9所截得的弦長.
科目:高中數學 來源: 題型:
【題目】為了解高三年級學生寒假期間的學習情況,某學校抽取了甲、乙兩班作為對象,調查這兩個班的學生在寒假期間平均每天學習的時間(單位:小時),統計結果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數相同,甲班學生平均每天學習時間在區間的有8人.
(I)求直方圖中的值及甲班學生平均每天學習時間在區間
的人數;
(II)從甲、乙兩個班平均每天學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知: =(2sinx,2cosx),
=(cosx,﹣cosx),f(x)=
.
(1)若 與
共線,且x∈(
,π),求x的值;
(2)求函數f(x)的周期;
(3)若對任意x∈[0, ]不等式m﹣2≤f(x)≤m+
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】方程 =﹣1表示的曲線即為函數y=f(x),有如下結論:( ) ①函數f(x)在R上單調遞減;
②函數F(x)=4f(x)+3x不存在零點;
③函數y=f(x)的值域是R;
④若函數g(x)和f(x)的圖象關于原點對稱,則函數y=g(x)的圖象就是方程 =﹣1確定的曲線.
其中所有正確的命題序號是( )
A.①②
B.②③
C.①③④
D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我市九龍江南岸江濱路建設的持續推進,未來市民將新增又一休閑好去處,據悉南江濱路建設工程規劃配套建造一個長方形公園ABCD,如圖所示,公園由長方形的休閑區A1B1C1D1(陰影部分)和環公園人行道組成,已知休閑區A1B1C1D1的面積為4000m2 , 人行道的寬度分別為4m和10m.
(1)若休閑區的長A1B1=x m,求公園ABCD所占面積S關于x的函數S(x)的解析式;
(2)要使公園所占面積最小,休閑區A1B1C1D1的長和寬該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失。M分為100分).
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(Ⅰ)求圖中的值;
(Ⅱ)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求
的分布列與數學期望
.
(參考公式:,其中
)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)圖象的相鄰兩條對稱軸之間的距離為
.
(Ⅰ)求ω的值及函數f(x)的單調遞減區間;
(Ⅱ)如圖,在銳角三角形ABC中有f(B)=1,若在線段BC上存在一點D使得AD=2,且AC=,CD=
-1,求三角形ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)設全集為R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com