【題目】已知二次函數f(x)=ax2+2x+c(a≠0),函數f(x)對于任意的都滿足條件f(1+x)=f(1﹣x).
(1)若函數f(x)的圖象與y軸交于點(0,2),求函數f(x)的解析式;
(2)若函數f(x)在區間(0,1)上有零點,求實數c的取值范圍.
【答案】
(1)解:函數f(x)對于任意的都滿足條件f(1+x)=f(1﹣x),
∴函數f(x)的對稱軸為x=1,
∴﹣ =1,
解得a=﹣1,
∵函數f(x)的圖象與y軸交于點(0,2),
∴c=2,
∴f(x)=﹣x2+2x+2
(2)解:∵函數f(x)在區間(0,1)上有零點,
∴f(0)f(1)<0,
∴c(﹣1+2+c)<0,
解得﹣1<c<0
【解析】(1)函數f(x)對于任意的都滿足條件f(1+x)=f(1﹣x),得到函數f(x)的對稱軸為x=1,即可求出a的值,再根據函數f(x)的圖象與y軸交于點(0,2),求出c的值,問題得以解決.(2)根據函數零點的性質結合二次函數的性質即可得到結論.
【考點精析】關于本題考查的二次函數的性質,需要了解當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數f(x)在[﹣1,2m]上不具有單調性,求實數m的取值范圍;
(2)若f(1)=g(1).
(ⅰ)求實數a的值;
(ⅱ)設 ,t2=g(x),
,當x∈(0,1)時,試比較t1 , t2 , t3的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線
的參數方程為
(
為參數),圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設圓與直線
交于
兩點,若點
的直角坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如圖:
(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數;
(3)從成績在[50,70)的學生任選2人,求此2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)為定義在R上的奇函數,且在(0,+∞)內是增函數,又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,定點
為圓上一動點,線段
的垂直平分線交線段
于點
,設點
的軌跡為曲線
;
(Ⅰ)求曲線的方程;
(Ⅱ)若經過的直線
交曲線于不同的兩點
,(點
在點
,
之間),且滿足
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com