精英家教網 > 高中數學 > 題目詳情

已知函數,是否存在實數,使函數在上遞減,在上遞增?若存在,求出所有值;若不存在,請說明理由.

解析試題分析:存在    

          6分
時,在(1,2)上有,不符題意,舍;--8分
時,
,在
即函數在上遞減,在上遞增 所以  12分
考點:函數單調性與導數
點評:由已知條件可得是函數的極小值點,除考慮處導數為零外還要看在處左側是否導數小于零,右側是否導數大于零

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,
(I)若,求函數的極小值,
(Ⅱ)若,設,函數.若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線 y = x3 + x-2 在點 P0 處的切線  與直線4x-y-1=0平行,且點 P0 在第三象限,
(1)求P0的坐標;
(2)若直線  , 且 l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

理科(本小題14分)已知函數,當時,函數取得極大值.
(Ⅰ)求實數的值;(Ⅱ)已知結論:若函數在區間內導數都存在,且,則存在,使得.試用這個結論證明:若,函數,則對任意,都有;(Ⅲ)已知正數滿足求證:當,時,對任意大于,且互不相等的實數,都有

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中
(1)若=0,求的單調區間;
(2)設表示兩個數中的最大值,求證:當0≤x≤1時,||≤

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 設函數.
(Ⅰ)判斷能否為函數的極值點,并說明理由;
(Ⅱ)若存在,使得定義在上的函數處取得最大值,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且處取得極值.
(1)求函數的解析式.
(2)設函數,是否存在實數,使得曲線軸有兩個交點,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的最小值為0,其中。
(1)求a的值
(2)若對任意的,有成立,求實數k的最小值
(3)證明

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知函數 
(1) 當時,求函數的最值;
(2) 求函數的單調區間;

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视