精英家教網 > 高中數學 > 題目詳情

【題目】

兩縣城AB相聚20km,現計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的的距離有關,對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統計調查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數為k ,當垃圾處理廠建在的中點時,對稱A和城B的總影響度為0.0065.1)將y表示成x的函數;(11)討論(1)中函數的單調性,并判斷弧上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到城A的距離,若不存在,說明理由。

【答案】12)在弧AB上存在一點,且此點到城市A的距離為

【解析】

試題(1)根據實際問題構造數學模型,直徑所對的圓周角為直角,進而得到

,進而得到關于的函數;(2)根據(1)得到的關于的函數,利用求導得到原函數在區間內的單調性,進而求得其最小值.

試題解析:(1)如圖,由題意知

AC⊥BC,,

其中當時,,所以

所以表示成的函數為.

2,,

,所以,,,,所以函數為單調減函數,,,所以函數為單調增函數.所以當, 即當點到城的距離為, 函數有最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1各條棱長均為4,且AA1⊥平面ABC,DAA1的中點,MN分別在線段BB1和線段CC1上,且B1M3BM,CN3C1N,

1)證明:平面DMN⊥平面BB1C1C;

2)求三棱錐B1DMN的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求曲線在點處的切線方程;

2)若關于的方程有三個不同的實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.

(Ⅰ)若,求曲線的方程;

(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸進線上;

(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積之和的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設雙曲線的左,右焦點分別為F1,F2,過F1的直線l交雙曲線左支于A,B兩點,則|BF2|+|AF2|的最小值為(  )

A. B. 11

C. 12 D. 16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經測算,當某產品促銷費用為x(萬元)時,銷售量t(萬件)滿足(其中,).現假定產量與銷售量相等,已知生產該產品t萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為/件.

1)將該產品的利潤y(萬元)表示為促銷費用x(萬元)的函數;

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)當時,求函數的最大值;

2)設,求函數的最大值;

3)已知,求函數的最大值;

4)設,且,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線為參數),曲線為參數).

(1)設相交于兩點,求;

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角AB、C的對邊,x=(2ac,b),y=(cosB,cosC),且x·y=0.

(1)求B的大。

(2)若b,求||的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视