精英家教網 > 高中數學 > 題目詳情

用分層抽樣方法從高中三個年級的相關人員中抽取若干人組成研究小組,有關數據見下表:(單位:人)

(Ⅰ)求,;
(Ⅱ)若從高二、高三年級抽取的人中選人,求這2人都來自高二年級的概率.

(Ⅰ),;(Ⅱ) .

解析試題分析:(Ⅰ)在分層抽樣中每層抽取的個體數是按各層個體數在總體的個數中所占的比例抽取的,所以由圖可知,,解出即可;(Ⅱ)先標記從高二年級中抽取的人為,從高三年級抽取的人為,再列舉出“從這兩個年級中抽取的人中選人”的所有的基本事件有:種,然后找出滿足“選中的人都來自高二”的基本事件有:種,后者除以前者即是所求概率.
試題解析:(Ⅰ)由題意可知,,
解得.          4分
(Ⅱ)記從高二年級中抽取的人為,從高三年級抽取的人為,
則從這兩個年級中抽取的人中選人的基本事件有:
種,8分
設選中的人都來自高二的事件為,
包含的基本事件有:共3種.
因此
故選中的人都是來自高二的概率為.             12分
考點:1.分層抽樣;2.基本事件;3.條件概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為.假設各次考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得證書的概率;
(2)在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為,求 的分布列及數學期望E.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)為迎接2014年“馬”年的到來,某校舉辦猜獎活動,參與者需先后回答兩道選擇題,問題有三個選項,問題有四個選項,但都只有一個選項是正確的,正確回答問題可獲獎金元,正確回答問題可獲獎金元,活動規定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續答題,否則該參與者猜獎活動終止,假設一個參與者在回答問題前,對這兩個問題都很陌生.
(1)如果參與者先回答問題,求其恰好獲得獎金元的概率;
(2)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學家對蒸汽輪機進行了170余項技術改進,增加了某項新技術,該項新技術要進入試用階段前必須對其中的三項不同指標甲、乙、丙進行通過量化檢測。假如該項新技術的指標甲、乙、丙獨立通過檢測合格的概率分別為、。指標甲、乙、丙合格分別記為4分、2分、4分;若某項指標不合格,則該項指標記0分,各項指標檢測結果互不影響。
(I)求該項技術量化得分不低于8分的概率;
(II)記該項新技術的三個指標中被檢測合格的指標個數為隨機變量X,求X的分布列與數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司招聘員工采取兩次考試(筆試)的方法:第一試考選擇題,共10道題(均為四選一題型),每題10分,共100分;第二試考解答題,共3題。規則是:只有在一試中達到或超過80分者才獲通過并有資格參加二試,參加二試的人只有答對2題或3題才能被錄用,F有甲、乙兩人參加該公司的招聘考試。且已知在一試時:兩人均會做10道題中的6道;對于另外4道題來說,甲有兩題可排除兩個錯誤答案、有兩題完全要猜,乙有兩題可排除一個錯誤答案、有一題可排除兩個錯誤答案、有一題完全要猜。進入二試后,對于任意一題,甲答對的概率是、乙答對的概率是.(1)分別求甲、乙兩人能通過一試進入二試的概率、;(2)求甲、乙兩人都能被錄用的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某幼兒園在“六·一兒童節”開展了一次親子活動,此次活動由寶寶和父母之一(后面以家長代稱)共同完成,幼兒園提供了兩種游戲方案:
方案一 寶寶和家長同時各拋擲一枚質地均勻的正方體骰子(六個面的點數分別是1,2,3,4,5,6),寶寶所得點數記為,家長所得點數記為;
方案二 寶寶和家長同時按下自己手中一個計算器的按鈕(此計算器只能產生區間[1,6]的隨機實數),寶寶的計算器產生的隨機實數記為,家長的計算器產生的隨機實數記為.
(Ⅰ)在方案一中,若,則獎勵寶寶一朵小紅花,求拋擲一次后寶寶得到一朵小紅花的概率;
(Ⅱ)在方案二中,若,則獎勵寶寶一本興趣讀物,求按下一次按鈕后寶寶得到一本興趣讀物的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

)已知某音響設備由五個部件組成,A電視機,B影碟機,C線路,D左聲道和E右聲道,其中每個部件工作的概率如圖所示,能聽到聲音,當且僅當A與B中有一個工作,C工作,D與E中有一個工作;且若D和E同時工作則有立體聲效果.

(1)求能聽到立體聲效果的概率;
(2)求聽不到聲音的概率.(結果精確到0.01)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠三個車間共有工人1000人各車間男、女工人數如表:

已知在全廠工人中隨機抽取1名,抽到第二車間男工的概率是0.15.
(1)求x的值;
(2)現用分層抽樣的方法在第一、第二、第三車間共抽取60名工人參加座談分,問應在第三車間抽取多少名?
(3)已知y≥185,z≥185,求第三車間中女工比男工少的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲,乙,丙三位學生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (),且三位學生是否做對相互獨立.記為這三位學生中做對該題的人數,其分布列為:


0
1
2
3





(Ⅰ)求至少有一位學生做對該題的概率;
(Ⅱ)求,的值;
(Ⅲ)求的數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视