已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內,且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,
、
分別是橢圓
的頂點,過坐標原點的直線交橢圓于
、
兩點,其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點
.設直線
的斜率為
.
(Ⅰ)當直線平分線段
時,求
的值;
(Ⅱ)當時,求點
到直線
的距離;
(Ⅲ)對任意,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知為拋物線
的焦點,拋物線上點
滿足
(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標為(
,
),過點F作斜率為
的直線與拋物線交于
、
兩點,
、
兩點的橫坐標均不為
,連結
、
并延長交拋物線于
、
兩點,設直線
的斜率為
,問
是否為定值,若是求出該定值,若不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H
(Ⅰ)設EF中點為,求證:O、
、B、P四點共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
四邊形ABCD的四個頂點都在拋物線上,A,C關于
軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標為,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com