精英家教網 > 高中數學 > 題目詳情
已知f(x)=loga
1-x
1+x
,(a>0且a≠1).
(1)若m,n∈(-1,1),求證f(m)+f(n)=f(
m+n
1+mn
);
(2)判斷f(x)在其定義域上的奇偶性,并予以證明;
(3)確定f(x)在(0,1)上的單調性.
分析:(1)欲證f(m)+f(n)=f(
m+n
1+mn
)成立,把左右兩邊分別代入函數表達式,左邊利用對數的運算性質進行化簡,可變形為loga
1-m-n+mn
1+m+n+mn
,再通過真數的分子分母都除以1+mn,即可化簡成右邊的形式,命題得證.
(2)利用函數奇偶性的變形形式,即只需證明f(-x)+f(x)=0,則函數必為奇函數,利用對數函數的運算性質,化簡f(-x)+f(x)即可.
(3)利用單調性的定義證明,只需設函數在(0,1)上任意兩個x1,x2,且x1<x2,再作差比較f(x1)與f(x2)的大小即可,作差后一定要將差分解為幾個因式的乘積的形式,再判斷每一個因式的符號,根據負因式的個數判斷積的符號,最后得出結論.
解答:解:(1)∵f(x)=loga
1-x
1+x
,∴
1-x
1+x
>0⇒-1<x<1
  m,n∈(-1,1),∴f(m)+f(n)=loga
1-m
1+m
+loga
1-n
1+n
=loga
1-m
1+m
1-n
1+n

=loga
1-m-n+mn
1+m+n+mn
=loga
1+mn-m-n
1+mn
1+mn+m+n
1+mn
=loga
1-
m+n
1+mn
1+
m+n
1+mn
=f(
m+n
1+mn
)   
(2)∵f(-x)+f(x)=loga
1+x
1-x
+loga
1-x
1+x
=loga
1+x
1-x
1-x
1+x
=loga1=0,
∴f(x)在其定義域(-1,1)上為奇函數.   
(3)設0<x1<x2<1,f(x1)-f(x2)=loga
1-x1
1+x1
-loga
1-x2
1+x2

=loga
1-x1
1+x1
1+x2
1-x2
=loga
1+x2-x1-x1x2
1+x1-x2-x1x2

∵0<x1<x2<1,∴1+x2-x1-x1x2>1+x1-x2-x1x2>0⇒
1+x2-x1-x1x2
1+x1-x2-x1x2
>1
∴當0<a<1,f(x1)-f(x2)<0,從而f(x)在(0,1)上為增函數;
當a>1,f(x1)-f(x2)>0,從而f(x)在(0,1)上為減函數.
點評:本題主要考查了函數奇偶性與單調性的證明,屬于概念考查題,做題時嚴格按照步驟去做.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=
log
(4x+1)
4
+kx是偶函數,其中x∈R,且k為常數.
(1)求k的值;
(2)記g(x)=4f(x)求x∈[0,2]時,函數個g(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的奇函數,當x>0時,f(x)=3x,那么f(log
 
4
1
2
)的值為
-9
-9

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R上的奇函數,且當x>0時有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的奇函數,當x>0時,f(x)=log 
1
4
x,那么f(-
1
2
)的值是( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=
log(4x+1)4
+kx是偶函數,其中x∈R,且k為常數.
(1)求k的值;
(2)記g(x)=4f(x)求x∈[0,2]時,函數個g(x)的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视